0000000000025881

AUTHOR

H. W. Schumacher

Magnetic field enhanced robustness of quantized current plateaus in single and double quantum dot non-adiabatic single charge pumps

We compare the robustness of the quantized current plateaus of semiconductor non-adiabatic quantized charge pumps consisting of a single quantum dot (SQD) and two QDs connected in series (DQD). For the SQD application of a perpendicular magnetic field leads to an enhanced robustness of the first current plateau I = ef, with f the pumping frequency and e the elementary charge. In contrast for the DQD a comparably enhanced robustness of the plateau I = 2ef is found. These findings might allow generation of higher currents without compromising quantization accuracy by optimizing the device geometry.

research product

Non-adiabatic pumping of single electrons affected by magnetic fields

Non-adiabatic pumping of discrete charges, realized by a dynamical quantum dot in an AlGaAs/GaAs heterostructure, is studied under influence of a perpendicular magnetic field. Application of an oscillating voltage in the GHz-range to one of two top gates, crossing a narrow wire and confining a quantum dot, leads to quantized pumped current plateaus in the gate characteristics. The regime of pumping one single electron is traced back to the diverse tunneling processes into and out-of the dot. Extending the theory to multiple electrons allows to investigate conveniently the pumping characteristics in an applied magnetic field. In this way, a qualitatively different behavior between pumping ev…

research product

Realization of a robust single-parameter quantized charge pump

This paper describes a novel scheme for quantized charge pumping based on single-parameter modulation. The device is realized in an AlGaAs-GaAs gated nanowire. A particular advantage of this realization is that operation in the quantized regime can be achieved in a potentially large range of amplitude and dc off-set of the driving signal. This feature together with the simple configuration might enable large scale parallel operation of many such devices.

research product

Constructive role of non-adiabaticity for quantized charge pumping

We investigate a recently developed scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated nanowire. It has been shown theoretically that non-adiabaticity is fundamentally required to realize single-parameter pumping, while in previous multi-parameter pumping schemes it caused unwanted and less controllable currents. In this paper we demonstrate experimentally the constructive and destructive role of non-adiabaticity by analysing the pumping current over a broad frequency range.

research product