0000000000026153
AUTHOR
William W. Cole
Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome
The LIM-homeodomain protein Lmxlb plays a central role in dorso-ventral patterning of the vertebrate limb1. Targeted disruption of Lmxlb results in skeletal defects including hypoplas-tic nails, absent patellae and a unique form of renal dysplasia (see accompanying manuscript by H. Chen et al.; ref. 2). These features are reminiscent of the dominantly inherited skeletal malformation nail patella syndrome (NFS). We show that LMX1B maps to the NFS locus and that three independent NFS patients carry de novo heterozygous mutations in this gene. Functional studies show that one of these mutations disrupts sequence-specific DNA binding, while the other two mutations result in premature terminatio…
Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome.
Basement membrane (BM) morphogenesis is critical for normal kidney function. Heterotrimeric type IV collagen, composed of different combinations of six alpha-chains (1-6), is a major matrix component of all BMs (ref. 2). Unlike in other BMs, glomerular BM (GBM) contains primarily the alpha 3(IV) and alpha 4(IV) chains, together with the alpha 5(IV) chain. A poorly understood, coordinated temporal and spatial switch in gene expression from ubiquitously expressed alpha 1(IV) and alpha 2(IV) collagen to the alpha 3(IV), alpha 4(IV) and alpha 5(IV) chains occurs during normal embryogenesis of GBM (ref. 4). Structural abnormalities of type IV collagen have been associated with diverse biological…