0000000000026604
AUTHOR
J. König
Moments of inertia of nuclei in the rare earth region: A relativistic versus nonrelativistic investigation
A parameter free investigation of the moments of inertia of ground state rotational bands in well deformed rare-earth nuclei is carried out using Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic fields are determined by the non-linear Lagrangian with the NL1 force and the pairing interaction by the central part of finite range Gogny D1S force. In CHFB theory, the properties in particle-hole and particle-particle channels are defined solely by Gogny D1S forces. Using an approximate particle number projection before variation by means of the Lipkin Nogami method improves the agreement with the…
Cranked Relativistic Hartree-Bogoliubov Theory: Formalism and Application to the Superdeformed Bands in the $A\sim 190$ region
Cranked Relativistic Hartree-Bogoliubov theory without and with approximate particle number projection by means of the Lipkin-Nogami method is presented in detail as an extension of Relativistic Mean Field theory with pairing correlations to the rotating frame. Pairing correlations are taken into account by a finite range two-body force of Gogny type. The applicability of this theory to the description of rotating nuclei is studied in detail on the example of superdeformed bands in even-even nuclei of the $A\sim 190$ mass region. Different aspects such as the importance of pairing and particle number projection, the dependence of the results on the parametrization of the RMF Lagrangian and …