0000000000026607
AUTHOR
J. L. Egido
Spectroscopy along flerovium decay chains. II : Fine structure in odd-A289Fl
Fifteen correlated α-decay chains starting from the odd-A superheavy nucleus 289Fl were observed following the fusion-evaporation reaction 48Ca+244Pu. The results call for at least two parallel α-decay sequences starting from at least two different states of 289Fl. This implies that close-lying levels in nuclei along these chains have quite different spin-parity assignments. Further, observed α-electron and α-photon coincidences, as well as the α-decay fine structure along the decay chains, suggest a change in the ground-state spin assignment between 285Cn and 281Ds. Our experimental results, on the excited level structure of the heaviest odd-N nuclei to date, provide a direct testing groun…
Moments of inertia of nuclei in the rare earth region: A relativistic versus nonrelativistic investigation
A parameter free investigation of the moments of inertia of ground state rotational bands in well deformed rare-earth nuclei is carried out using Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic fields are determined by the non-linear Lagrangian with the NL1 force and the pairing interaction by the central part of finite range Gogny D1S force. In CHFB theory, the properties in particle-hole and particle-particle channels are defined solely by Gogny D1S forces. Using an approximate particle number projection before variation by means of the Lipkin Nogami method improves the agreement with the…
Spectroscopy along flerovium decay chains. III : Details on experiment, analysis, 282Cn, and spontaneous fission branches
Flerovium isotopes (element Z=114) were produced in the fusion-evaporation reactions 48Ca+242,244Pu and studied with an upgraded TASISpec decay station placed in the focal plane of the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Twenty-nine flerovium decay chains were identified by means of correlated implantation, α decay, and spontaneous fission events. Data analysis aspects and statistical assessments, primarily based on measured rates of various events, which laid the foundation for the comprehensive spectroscopic information on the flerovium decay chains, are presented in detail. Various decay scenarios of an excited state obse…
Spectroscopy along Flerovium Decay Chains: Discovery ofDs280and an Excited State inCn282
A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively. A prompt coincidence between a 9.60(1)-MeV α particle event and a 0.36(1)-MeV conversion electron marked the first observation of an excited state in an even-even isotope of the heaviest man-made eleme…