0000000000026639
AUTHOR
Janis Kaneps
Running time to recognize nonregular languages by 2-way probabilistic automata
R. Freivalds proved that the language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-ɛ. A.G.Greenberg and A.Weiss proved that no 2pfa can recognize this language in expected time \(T(n) = c^\circ{(n)}\). For arbitrary languages C.Dwork and L.Stockmeyer showed somewhat less: if a language L is recognized by a 2pfa in expected time \(T(n) = c^{n^\circ{(1)} }\), then L is regular. First, we improve this theorem replacing the expected time by the time with probability 1-ɛ. On the other hand, time bound by C.Dwork and L.Stockmeyer cannot be improved: for arbitrary k≥2 we exhibit a specific nonregular language that can be recognized by 2…
Minimal nontrivial space complexity of probabilistic one- way turing machines
Languages recognizable in o(log log n) space by probabilistic one — way Turing machines are proved to be regular. This solves an open problem in [4].
Tally languages accepted by alternating multitape finite automata
We consider k-tape 1-way alternating finite automata (k-tape lafa). We say that an alternating automaton accepts a language L\(\subseteq\)(Σ*)k with f(n)-bounded maximal (respectively, minimal) leaf-size if arbitrary (respectively, at least one) accepting tree for any (w1, w2,..., wk) ∈ L has no more than $$f\mathop {(\max }\limits_{1 \leqslant i \leqslant k} \left| {w_i } \right|)$$ leaves. The main results of the paper are the following. If k-tape lafa accepts language L over one-letter alphabet with o(log n)-bounded maximal leaf-size or o(log log n)-bounded minimal leaf-size then the language L is semilinear. Moreover, if a language L is accepted with o(log log(n))-bounded minimal (respe…
Tally languages accepted by Monte Carlo pushdown automata
Rather often difficult (and sometimes even undecidable) problems become easily decidable for tally languages, i.e. for languages in a single-letter alphabet. For instance, the class of languages recognizable by 1-way nondeterministic pushdown automata equals the class of the context-free languages, but the class of the tally languages recognizable by 1-way nondeterministic pushdown automata, contains only regular languages [LP81]. We prove that languages over one-letter alphabet accepted by randomized one-way 1-tape Monte Carlo pushdown automata are regular. However Monte Carlo pushdown automata can be much more concise than deterministic 1-way finite state automata.
Regularity of one-letter languages acceptable by 2-way finite probabilistic automata
R. Freivalds proved that the nonregular language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-e (e>0). We prove that such an effect is impossible for one-letter languages: every one-letter language acceptable by 2pfa with an isolated cutpoint is regular.