0000000000026639

AUTHOR

Janis Kaneps

showing 5 related works from this author

Running time to recognize nonregular languages by 2-way probabilistic automata

1991

R. Freivalds proved that the language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-ɛ. A.G.Greenberg and A.Weiss proved that no 2pfa can recognize this language in expected time \(T(n) = c^\circ{(n)}\). For arbitrary languages C.Dwork and L.Stockmeyer showed somewhat less: if a language L is recognized by a 2pfa in expected time \(T(n) = c^{n^\circ{(1)} }\), then L is regular. First, we improve this theorem replacing the expected time by the time with probability 1-ɛ. On the other hand, time bound by C.Dwork and L.Stockmeyer cannot be improved: for arbitrary k≥2 we exhibit a specific nonregular language that can be recognized by 2…

CombinatoricsNested wordRegular languageProbabilistic automatonContinuous spatial automatonQuantum finite automataAutomata theoryNondeterministic finite automatonω-automatonMathematics
researchProduct

Minimal nontrivial space complexity of probabilistic one- way turing machines

2005

Languages recognizable in o(log log n) space by probabilistic one — way Turing machines are proved to be regular. This solves an open problem in [4].

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSuper-recursive algorithmProbabilistic Turing machineLinear speedup theoremNSPACEDescription numberCombinatoricsTuring machinesymbols.namesakeTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESNon-deterministic Turing machinesymbolsTime hierarchy theoremComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Tally languages accepted by alternating multitape finite automata

1997

We consider k-tape 1-way alternating finite automata (k-tape lafa). We say that an alternating automaton accepts a language L\(\subseteq\)(Σ*)k with f(n)-bounded maximal (respectively, minimal) leaf-size if arbitrary (respectively, at least one) accepting tree for any (w1, w2,..., wk) ∈ L has no more than $$f\mathop {(\max }\limits_{1 \leqslant i \leqslant k} \left| {w_i } \right|)$$ leaves. The main results of the paper are the following. If k-tape lafa accepts language L over one-letter alphabet with o(log n)-bounded maximal leaf-size or o(log log n)-bounded minimal leaf-size then the language L is semilinear. Moreover, if a language L is accepted with o(log log(n))-bounded minimal (respe…

CombinatoricsTree (descriptive set theory)Finite-state machineLog-log plotAlphabetBinary logarithmComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Tally languages accepted by Monte Carlo pushdown automata

1997

Rather often difficult (and sometimes even undecidable) problems become easily decidable for tally languages, i.e. for languages in a single-letter alphabet. For instance, the class of languages recognizable by 1-way nondeterministic pushdown automata equals the class of the context-free languages, but the class of the tally languages recognizable by 1-way nondeterministic pushdown automata, contains only regular languages [LP81]. We prove that languages over one-letter alphabet accepted by randomized one-way 1-tape Monte Carlo pushdown automata are regular. However Monte Carlo pushdown automata can be much more concise than deterministic 1-way finite state automata.

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordTheoretical computer scienceComputational complexity theoryComputer scienceDeterministic pushdown automatonTuring machinesymbols.namesakeRegular languageComputer Science::Logic in Computer ScienceQuantum finite automataNondeterministic finite automatonDiscrete mathematicsFinite-state machineDeterministic context-free languageComputabilityDeterministic context-free grammarContext-free languagePushdown automatonAbstract family of languagesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Cone (formal languages)Embedded pushdown automatonUndecidable problemNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonsymbolsComputer Science::Programming LanguagesAlphabetComputer Science::Formal Languages and Automata Theory
researchProduct

Regularity of one-letter languages acceptable by 2-way finite probabilistic automata

1991

R. Freivalds proved that the nonregular language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-e (e>0). We prove that such an effect is impossible for one-letter languages: every one-letter language acceptable by 2pfa with an isolated cutpoint is regular.

Discrete mathematicsHigh probabilityProbabilistic finite automataComputer scienceProbabilistic automaton
researchProduct