0000000000027970

AUTHOR

Ana Corberán-vallet

0000-0002-1091-9534

showing 16 related works from this author

Forecasting correlated time series with exponential smoothing models

2011

Abstract This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection crite…

Multivariate statisticsMathematical optimizationsymbols.namesakeModel selectionExponential smoothingPosterior probabilitysymbolsUnivariateMarkov chain Monte CarloBusiness and International ManagementSeemingly unrelated regressionsBayesian inferenceMathematicsInternational Journal of Forecasting
researchProduct

A Bayesian unified framework for risk estimation and cluster identification in small area health data analysis.

2020

Many statistical models have been proposed to analyse small area disease data with the aim of describing spatial variation in disease risk. In this paper, we propose a Bayesian hierarchical model that simultaneously allows for risk estimation and cluster identification. Our model formulation assumes that there is an unknown number of risk classes and small areas are assigned to a risk class by means of independent allocation variables. Therefore, areas within each cluster are assumed to share a common risk but they may be geographically separated. The posterior distribution of the parameter representing the number of risk classes is estimated using a novel procedure that combines its prior …

Computer scienceEpidemiologyPathology and Laboratory Medicine01 natural sciencesGeographical locations010104 statistics & probabilityChickenpoxMathematical and Statistical TechniquesStatisticsMedicine and Health SciencesPublic and Occupational Health0303 health sciencesMultidisciplinarySimulation and ModelingQREuropeIdentification (information)Medical MicrobiologySmall-Area AnalysisViral PathogensVirusesPhysical SciencesMedicinePathogensAlgorithmsResearch ArticleHerpesvirusesScienceBayesian probabilityPosterior probabilityBayesian MethodDisease SurveillanceDisease clusterResearch and Analysis MethodsRisk AssessmentMicrobiologyVaricella Zoster Virus03 medical and health sciencesRisk classPrior probabilityCovariateBayesian hierarchical modelingHumansEuropean Union0101 mathematicsMicrobial Pathogens030304 developmental biologyBiology and life sciencesOrganismsStatistical modelBayes TheoremProbability TheoryProbability DistributionMarginal likelihoodConvolutionSpainPeople and placesDNA virusesMathematical FunctionsMathematicsPloS one
researchProduct

A Forecasting Support System Based on Exponential Smoothing

2010

This chapter presents a forecasting support system based on the exponential smoothing scheme to forecast time-series data. Exponential smoothing methods are simple to apply, which facilitates computation and considerably reduces data storage requirements. Consequently, they are widely used as forecasting techniques in inventory systems and business planning. After selecting the most adequate model to replicate patterns of the time series under study, the system provides accurate forecasts which can play decisive roles in organizational planning, budgeting and performance monitoring.

Scheme (programming language)Mathematical optimizationSeries (mathematics)Computer sciencebusiness.industryComputationExponential smoothingPrediction intervalReplicatecomputer.software_genreComputer data storageData miningAutoregressive integrated moving averagebusinesscomputercomputer.programming_language
researchProduct

Conditional predictive inference for online surveillance of spatial disease incidence

2011

This paper deals with the development of statistical methodology for timely detection of incident disease clusters in space and time. The increasing availability of data on both the time and the location of events enables the construction of multivariate surveillance techniques, which may enhance the ability to detect localized clusters of disease relative to the surveillance of the overall count of disease cases across the entire study region. We introduce the surveillance conditional predictive ordinate as a general Bayesian model-based surveillance technique that allows us to detect small areas of increased disease incidence when spatial data are available. To address the problem of mult…

multiple comparisonsGeorgiaIncidenceSouth Carolinalagged loss functionBayes TheoremBayesian hierarchical modelspublic health surveillanceArticleconditional predictive ordinatePopulation Surveillancespatial dataSalmonella InfectionsCluster AnalysisHumansComputer SimulationPoisson Distribution
researchProduct

Application of a Bayesian Spatiotemporal Surveillance Method to NYC Syndromic Data

2014

Incorporating prior knowledge (e.g., the spatial distribution of zip codes and background population effects) into a model using Bayesian methods could potentially improve outbreak detection. We adapted a previously described Bayesian model-based spatiotemporal surveillance technique to daily respiratory syndrome counts in NYC Emergency Department data in 2009, the year of the H1N1 influenza pandemic. Citywide, 56 alarms were produced across 15 zip codes, all during days of elevated respiratory visits. Future work includes evaluating our choice of baseline length, considering other alarm thresholds, and conducting a formal evaluation of the method across five syndromes in NYC.

education.field_of_studybusiness.industryBayesian probabilityH1N1 influenzaPopulationEmergency departmentISDS 2013 Conference Abstractscomputer.software_genreBayesian inferenceZip codeFormal evaluationspatiotemporal dataPandemicoutbreak detectionGeneral Earth and Planetary SciencesMedicinesyndromic surveillanceData miningbusinesseducationcomputerCartographyBayesian modelsGeneral Environmental ScienceOnline Journal of Public Health Informatics
researchProduct

Forecasting time series with missing data using Holt's model

2009

This paper deals with the prediction of time series with missing data using an alternative formulation for Holt's model with additive errors. This formulation simplifies both the calculus of maximum likelihood estimators of all the unknowns in the model and the calculus of point forecasts. In the presence of missing data, the EM algorithm is used to obtain maximum likelihood estimates and point forecasts. Based on this application we propose a leave-one-out algorithm for the data transformation selection problem which allows us to analyse Holt's model with multiplicative errors. Some numerical results show the performance of these procedures for obtaining robust forecasts.

Statistics and ProbabilityApplied MathematicsAutocorrelationExponential smoothingLinear modelData transformation (statistics)EstimatorMissing dataExpectation–maximization algorithmStatisticsStatistics Probability and UncertaintyAdditive modelAlgorithmMathematicsJournal of Statistical Planning and Inference
researchProduct

Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model

2018

[EN] We present a Bayesian stochastic susceptible-exposed-infectious-recovered model in discrete time to understand chickenpox transmission in the Valencian Community, Spain. During the last decades, different strategies have been introduced in the routine immunization program in order to reduce the impact of this disease, which remains a public health's great concern. Under this scenario, a model capable of explaining closely the dynamics of chickenpox under the different vaccination strategies is of utter importance to assess their effectiveness. The proposed model takes into account both heterogeneous mixing of individuals in the population and the inherent stochasticity in the transmiss…

Article SubjectGeneral Computer ScienceComputer scienceComputationBayesian probabilityPosterior probabilityPopulation01 natural scienceslcsh:QA75.5-76.95010305 fluids & plasmas010104 statistics & probabilityMixing (mathematics)0103 physical sciencesmedicineEconometrics0101 mathematicseducationeducation.field_of_studyMultidisciplinaryChickenpoxPrediction intervalmedicine.diseaseVaccinationDiscrete time and continuous timePosterior predictive distributionlcsh:Electronic computers. Computer scienceMATEMATICA APLICADA
researchProduct

Prospective surveillance of multivariate spatial disease data

2012

Surveillance systems are often focused on more than one disease within a predefined area. On those occasions when outbreaks of disease are likely to be correlated, the use of multivariate surveillance techniques integrating information from multiple diseases allows us to improve the sensitivity and timeliness of outbreak detection. In this article, we present an extension of the surveillance conditional predictive ordinate to monitor multivariate spatial disease data. The proposed surveillance technique, which is defined for each small area and time period as the conditional predictive distribution of those counts of disease higher than expected given the data observed up to the previous t…

Statistics and ProbabilityMultivariate statisticsMultivariate analysisEpidemiologyComputer scienceSouth CarolinaBayesian probabilityDiseasemultiple diseasesPoisson distributionArticleDisease Outbreaksshared component modelsymbols.namesakeHealth Information Managementconditional predictive ordinateStatisticsHumansProspective StudiesDisease surveillanceModels StatisticalDisease surveillanceIncidence (epidemiology)IncidenceOutbreakPopulation SurveillanceMultivariate Analysissymbols
researchProduct

A Bayesian SIRS model for the analysis of respiratory syncytial virus in the region of Valencia, Spain

2014

We present a Bayesian stochastic susceptible-infected-recovered-susceptible (SIRS) model in discrete time to understand respiratory syncytial virus dynamics in the region of Valencia, Spain. A SIRS model based on ordinary differential equations has also been proposed to describe RSV dynamics in the region of Valencia. However, this continuous-time deterministic model is not suitable when the initial number of infected individuals is small. Stochastic epidemic models based on a probability of disease transmission provide a more natural description of the spread of infectious diseases. In addition, by allowing the transmission rate to vary stochastically over time, the proposed model provides…

Statistics and ProbabilityTransmission rateBayesian probabilityPosterior probabilityPrediction intervalGeneral MedicineDiscrete time and continuous timePosterior predictive distributionOrdinary differential equationQuantitative Biology::Populations and EvolutionApplied mathematicsStatistics Probability and UncertaintyDisease transmissionMathematicsBiometrical Journal
researchProduct

Multivariate exponential smoothing: A Bayesian forecast approach based on simulation

2009

This paper deals with the prediction of time series with correlated errors at each time point using a Bayesian forecast approach based on the multivariate Holt-Winters model. Assuming that each of the univariate time series comes from the univariate Holt-Winters model, all of them sharing a common structure, the multivariate Holt-Winters model can be formulated as a traditional multivariate regression model. This formulation facilitates obtaining the posterior distribution of the model parameters, which is not analytically tractable: simulation is needed. An acceptance sampling procedure is used in order to obtain a sample from this posterior distribution. Using Monte Carlo integration the …

Numerical AnalysisMultivariate statisticsGeneral Computer ScienceApplied MathematicsUnivariateMarkov chain Monte CarloTheoretical Computer ScienceNormal-Wishart distributionsymbols.namesakeUnivariate distributionModeling and SimulationStatisticssymbolsMultivariate t-distributionBayesian linear regressionGibbs samplingMathematicsMathematics and Computers in Simulation
researchProduct

A Multivariate Age-Structured Stochastic Model with Immunization Strategies to Describe Bronchiolitis Dynamics

2021

Bronchiolitis has a high morbidity in children under 2 years old. Respiratory syncytial virus (RSV) is the most common pathogen causing the disease. At present, there is only a costly humanized monoclonal RSV-specific antibody to prevent RSV. However, different immunization strategies are being developed. Hence, evaluation and comparison of their impact is important for policymakers. The analysis of the disease with a Bayesian stochastic compartmental model provided an improved and more natural description of its dynamics. However, the consideration of different age groups is still needed, since disease transmission greatly varies with age. In this work, we propose a multivariate age-struct…

medicine.medical_specialtyMultivariate statisticsStochastic modellingstochastic Bayesian modelHealth Toxicology and Mutagenesisrespiratory syncytial virusBayesian probabilityDiseaseRespiratory Syncytial Virus InfectionsPoisson distributioninfectious diseasesArticle03 medical and health sciencessymbols.namesakemultivariate age-structured model0302 clinical medicine030225 pediatricsMedicineHumans030212 general & internal medicineIntensive care medicineChildAge structuredimmunization programsbusiness.industryPublic Health Environmental and Occupational HealthInfant NewbornRInfantBayes TheoremImmunization (finance)medicine.diseaseRespiratory Syncytial VirusesBronchiolitisChild PreschoolsymbolsMedicineImmunizationbronchiolitisbusinessInternational Journal of Environmental Research and Public Health
researchProduct

A new approach to portfolio selection based on forecasting

2023

In this paper we analyze the portfolio selection problem from a novel perspective based on the analysis and prediction of the time series corresponding to the portfolio’s value. Namely, we define the value of a particular portfolio at the time of its acquisition. Using the time series of historical prices of the different financial assets, we calculate backward the value that said portfolio would have had in past time periods. A damped trend model is then used to analyze this time series and to predict the future values of the portfolio, providing estimates of the mean and variance for different forecasting horizons. These measures are used to formulate the portfolio selection problem, whic…

Artificial Intelligencetime series analysisGeneral EngineeringfinanceforecastingUNESCO::CIENCIAS TECNOLÓGICASmulti-objective genetic algorithmportfolio optimizationComputer Science Applications
researchProduct

Integration of animal health and public health surveillance sources to exhaustively inform the risk of zoonosis: An application to echinococcosis in …

2020

The analysis of zoonotic disease risk requires the consideration of both human and animal geo-referenced disease incidence data. Here we show an application of joint Bayesian analyses to the study of echinococcosis granulosus (EG) in the province of Rio Negro, Argentina. We focus on merging passive and active surveillance data sources of animal and human EG cases using joint Bayesian spatial and spatio-temporal models. While similar spatial clustering and temporal trending was apparent, there appears to be limited lagged dependence between animal and human outcomes. Beyond the data quality issues relating to missingness at different times, we were able to identify relations between dog and …

0301 basic medicineEpidemiologyRC955-962Animal DiseasesBayes' theoremMedical Conditions0302 clinical medicinePublic health surveillanceZoonosesArctic medicine. Tropical medicineEpidemiologyMedicine and Health SciencesPublic Health SurveillanceDog DiseasesChildEchinococcus granulosusMammalsCiencias Médicas y de la SaludDisease surveillanceSurveillancebiologyZoonosisEukaryotaEchinococcosisInfectious DiseasesGeographyHelminth InfectionsVertebratesPublic aspects of medicineRA1-1270Research ArticleNeglected Tropical Diseasesmedicine.medical_specialtyInfectious Disease ControlAdolescent030231 tropical medicineArgentinaDisease SurveillanceModels Biological03 medical and health sciencesDogsEchinococcosisEnvironmental healthControlParasitic DiseasesmedicineAnimalsHumansEchinococcus granulosusOrganismsPublic Health Environmental and Occupational HealthBiology and Life SciencesBayes TheoremTropical Diseasesmedicine.diseasebiology.organism_classification030104 developmental biologyEchinococosisMedical Risk FactorsInfectious Disease SurveillanceData qualityAmniotesZoology
researchProduct

Un análisis bayesiano de modelos multivariantes de suavizado exponencial

2009

:MATEMÁTICAS [UNESCO]StatisticsUNESCO::MATEMÁTICAS
researchProduct

Bayesian forecasting of demand time-series data with zero values

2013

This paper describes the development of a Bayesian procedure to analyse and forecast positive demand time-series data with a proportion of zero values and a high level of variability for the non-zero data. The resulting forecasts play decisive roles in organisational planning, budgeting, and performance monitoring. Exponential smoothing methods are widely used as forecasting techniques in industry and business. However, they can be unsuitable for the analysis of non-negative demand time-series data with the aforementioned features. In this paper, an unconstrained latent demand underlying the observed demand is introduced into the linear heteroscedastic model associated with the Holt-Winters…

Exponential smoothingBayesian probabilityEconometricsEconomicsPerformance monitoringHeteroscedastic modelDemand forecastingSupply chain planningTime seriesIndustrial and Manufacturing EngineeringZero (linguistics)European J. of Industrial Engineering
researchProduct

Prospective analysis of infectious disease surveillance data using syndromic information.

2014

In this paper, we describe a Bayesian hierarchical Poisson model for the prospective analysis of data for infectious diseases. The proposed model consists of two components. The first component describes the behavior of disease during nonepidemic periods and the second component represents the increase in disease counts due to the presence of an epidemic. A novelty of our model formulation is that the parameters describing the spread of epidemics are allowed to vary in both space and time. We also show how syndromic information can be incorporated into the model to provide a better description of the data and more accurate one-step-ahead forecasts. These real-time forecasts can be used to …

Statistics and ProbabilityEpidemiologySouth CarolinaBayesian probabilityDiseasecomputer.software_genreCommunicable Diseasessymbols.namesakeProspective analysisHealth Information ManagementMedicineHumansPoisson regressionProspective StudiesBronchitisbusiness.industryNoveltyOutbreakBayes TheoremModels TheoreticalInfectious disease (medical specialty)Population SurveillancesymbolsTargeted surveillanceData miningbusinesscomputerStatistical methods in medical research
researchProduct