0000000000033442
AUTHOR
Nicole Zink
In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD
We report on the in situ heating transmission electron microscopy (TEM) study of WS2 and MoS2 nanoparticles obtained from metal–organic chemical vapor deposition (MOCVD). The general behavior of MoS2 and WS2 is similar: Round, amorphous particles in the pristine sample transform to hollow, onion-like particles upon annealing. A second type of particle with straight layers exhibits only minor changes. A significant difference between both compounds could be demonstrated in their crystallization behavior. The results of the in situ heating experiments are compared to those obtained from an ex situ annealing process under Ar.
Synthesis of MoO3 Nanostructures and Their Facile Conversion to MoS2 Fullerenes and Nanotubes.
The fast thermolysis of ammonium molybdate leads to a mixture of MoO3 and Mo5.3O14.5(OH)2.8(H2O)1.36 with spherical and rod-like morphologies. The oxide mixture can be converted in quantitative yield to inorganic fullerene-type (IF) MoS2 and MoS2 nanotubes (NT) by H2S reduction using a facile and quick procedure. The products were studied by X-Ray Diffraction (XRD) and by Transmission Electron Microscopy (TEM). TEM analysis reveals that the spherical and rod-like morphology of the oxide precursor is preserved during the H2S treatment.
Low temperature synthesis of monodisperse nanoscaled ZrO2with a large specific surface area
Thermal decomposition of Zr(C(2)O(4))(2)·4H(2)O within an autoclave or in a conventional tube furnace at temperatures below 380 °C resulted in nano- and micron-sized ZrO(2), respectively. Reactions under autogenic pressure yielded monodisperse monoclinic (m) and tetragonal (t) ZrO(2) nanoparticles with an average diameter of ~8 nm and interconnected t-ZrO(2) nanoparticles with diameters of ~4 nm, depending on the synthesis temperature. Samples were characterised by X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) associated with energy dispersive X-ray spectroscopy (EDS), Raman microspectroscopy and phot…
Synthetic Approaches to Functionalized Chalcogenide Nanotubes
Metal-Organic Chemical Vapor Depostion Synthesis of Hollow Inorganic-Fullerene-Type MoS2 and MoSe2 Nanoparticles
ChemInform Abstract: Synthesis and Functionalization of Chalcogenide Nanotubes
New synthetic approaches to MS 2 (M = Sn, Nb, Mo, W) chalcogenide nanostructures are highlighted. Most chalcogenide particles can be functionalized directly with inorganic nanoparticles such as Au, ZnO or MnO. Depending on the Pearson hardness of the metal involved, the functionalization may be reversible or irreversible. A covalent functionalization strategy is based on a steric shielding of the coordination sphere of transition metal atoms in such a way that only coordination sites are available for bonding to the chalcogenide surface. This allows the immobilization of fluorophors, redox active groups or proteins onto chalcogenide nanoparticle.
Synthesis and functionalization of chalcogenide nanotubes
New synthetic approaches to MS 2 (M = Sn, Nb, Mo, W) chalcogenide nanostructures are highlighted. Most chalcogenide particles can be functionalized directly with inorganic nanoparticles such as Au, ZnO or MnO. Depending on the Pearson hardness of the metal involved, the functionalization may be reversible or irreversible. A covalent functionalization strategy is based on a steric shielding of the coordination sphere of transition metal atoms in such a way that only coordination sites are available for bonding to the chalcogenide surface. This allows the immobilization of fluorophors, redox active groups or proteins onto chalcogenide nanoparticle.
Metal—Organic Chemical Vapor Deposition Synthesis of Hollow Inorganic-Fullerene-Type MoS2 and MoSe2 Nanoparticles.
Selective Synthesis of Hollow and Filled Fullerene-like (IF) WS2 Nanoparticles via Metal–Organic Chemical Vapor Deposition
The synthesis of WS2 onion-like nanoparticles by means of a high-temperature metal–organic chemical vapor deposition (MOCVD) process starting from W(CO)6 and elemental sulfur is reported. The react...
Hierarchical Assembly of TiO2 Nanoparticles on WS2 Nanotubes Achieved Through Multifunctional Polymeric Ligands
Thefunctionalization of nanotubes is required in order to bene-fit from their outstanding properties, as any application inmaterials and devices is hindered by processing and manipu-lation difficulties. Only the attachment of appropriate chem-ical functionalities on the nanotube surface allows tailoringof the properties for the respective applications. As an ex-ample, the enhancement of the nanotube solubility is onemajor task since most pristine nanotubes are insoluble inboth water and organic solvents. Thus, the improvement ofthe solubility by chemical functionalization is an importantconcept for synthetic chemists and materials scientists. Tai-loring of the surface chemical bonds might a…
ChemInform Abstract: Large Scale MOCVD Synthesis of Hollow ReS2Nanoparticles with Nested Fullerene-Like Structure.
Overcoming the Insolubility of Molybdenum Disulfide Nanoparticles through a High Degree of Sidewall Functionalization Using Polymeric Chelating Ligands
Large Scale MOCVD Synthesis of Hollow ReS2 Nanoparticles with Nested Fullerene-Like Structure
The synthesis of ReS2 onionlike nanoparticles by means of a high-temperature MOCVD process starting from Re2(CO)10 and elemental sulfur is reported. The reaction is carried out in a two-step proces...
From Single Molecules to Nanoscopically Structured Functional Materials
AbstractThe synthesis of MS2 (M = Mo, W) onion-like nanoparticles by means of a high temperature MOCVD process starting from W(CO)6 and elemental sulfur is reported. The reaction can also be carried out in two steps where the intermediate amorphous WS2 nanoparticles formed through the high temperature reaction of tungsten and sulfur in the initial phase of the reaction are isolated and converted in a separate annealing step to onion-type WS2 nanoparticles. Based on a study of the temperature dependence of the reaction a set of conditions could be derived where onion-like structures were formed in a one-step reaction. Onion-like structures obtained in the single-step process were filled, whe…