0000000000033602
AUTHOR
K. Miculis
Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., ``laser-dressed'') states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983)] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ${\mathrm{\ensuremath{\Omega}}}_{S}$. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as…
Phototransition of Na(3p3/2) into high Rydberg states and the ionization continuum
A model potential method is used to investigate photoabsorption from the Na(3p3/2) state. Absorption cross sections into higher Rydberg states and photoionization cross sections are presented as an analytical function of photo electron energy. Einstein coefficients for spontaneous emissions 3p3/2 ← ns1/2, nd5/2, nd3/2 are tabulated for n up to 50. The Einstein coefficients and low-energy ionization cross sections are believed to be accurate to better than 2–3%, above 1 eV the error may increase to 4–6%.
Broadening and intensity redistribution in theNa(3p)hyperfine excitation spectra due to optical pumping in the weak excitation limit
Detailed analysis of spectral line broadening and variations in relative intensities of hyperfine spectral components due to optical pumping is presented. Hyperfine levels of sodium 3p1/2 and 3p3/2 levels are selectively excited in a supersonic beam at various laser intensities under the conditions when optical pumping time is shorter than transit time of atoms through the laser beam. The excitation spectra exhibit significant line broadening at laser intensities well below the saturation intensity, and redistribution of intensities of hyperfine spectral components is observed, which in some cases is contradicting with intuitive expectations. Theoretical analysis of the dynamics of optical …
Collisional and thermal ionization of sodium Rydberg atoms: II. Theory fornS,nP andnD states withn= 5–25
A stochastic model of associative ionization in collisions of Rydberg atoms with ground-state atoms is presented. The conventional Duman–Shmatov–Mihajlov–Janev (DSMJ) model treats the ionization as excitation of Rydberg electron to the continuum by the electric-dipole field generated by exchange interaction within the quasi-molecular ion. The stochastic model essentially extends this treatment by taking into account redistribution of population over a range of Rydberg states prior to ionization, which is caused by non-adiabatic processes in overlapping multiple level crossings of quasi-molecular Rydberg states. The redistribution is modelled as diffusion of electrons in the Rydberg energy s…
Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20
Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisio…
<title>Collisional and thermal ionization of sodium Rydberg atoms in single and crossed atomic beams</title>
The results of the experimental and theoretical study on associative ionization of laser excited Na Rydberg atoms in collisions with ground-state atoms and on thermal ionization by blackbody radiation in single and crossed effusive atomic beams are reported and discussed.
Analytical model of transit time broadening for two-photon excitation in a three-level ladder and its experimental validation
We revisit transit time broadening for one of the typical experiment designs in molecular spectroscopy, that of a collimated supersonic beam of particles crossing a focused Gaussian laser beam. In particular, we consider a Doppler-free arrangement of a collimated supersonic beam of Na${}_{2}$ molecules crossing two counterpropagating laser beams that excite a two-photon transition in a three-level ladder scheme. We propose an analytical two-level model with a virtual intermediate level to show that the excitation line shape is described by a Voigt profile and provide the validity range of this model with respect to significant experimental parameters. The model also shows that line broadeni…
Expressions of “fast” and “slow” chameleon dressed states in Autler–Townes spectra of alkali‐metal atoms
Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect
We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole–dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d , n i , of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive—for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d depende…
Broadening and intensity redistribution in the Na($3p$) hyperfine excitation spectra due to optical pumping in the weak excitation limit
Detailed analysis of spectral line broadening and variations in relative intensities of hyperfine spectral components due to optical pumping is presented. Hyperfine levels of sodium $3p_{1/2}$ and $3p_{3/2}$ levels are selectively excited in a supersonic beam at various laser intensities under the conditions when optical pumping time is shorter than transit time of atoms through the laser beam. The excitation spectra exhibit significant line broadening at laser intensities well below the saturation intensity, and redistribution of intensities of hyperfine spectral components is observed, which in some cases is contradicting with intuitive expectations. Theoretical analysis of the dynamics o…
Collisional and thermal ionization of sodium Rydberg atoms III. Experiment and theory fornS andnD states withn= 8–20 in crossed atomic beams
The results of experimental and theoretical studies of collisional ionization of Na Rydberg atoms in nS and nD(n = 8–20) states are presented. Molecular and atomic ions from associative ionization and photoionization by blackbody radiation were detected after pulsed laser excitation of Rydberg states in crossed Na atomic beams. An original method of determination of associative ionization rate constants based on the measurement of ratios of molecular and atomic ion signals was used, which did not require the determination of absolute number density of Rydberg atoms. The measured rate constants of associative ionization of Rydberg atoms in collisions with ground-state Na atoms are compared w…