0000000000033778

AUTHOR

Slobodan Vuković

Designed surface modes propagating along hyperbolic metamaterials

We report on surface-wave propagation (SWP) that occurs in semi-infinite hyperbolic metamaterials whose optical axis is set in the interface plane. In practice it is implemented by a multi-layered metal-dielectric nanostructure that is cut normally to the layers. Our theoretical analysis shows that various conditions can be designed enabling distinct regimes of SWP. We concluded that hybridization of SWP polarization leads to tighter confinement near the interface as compared with conventional surface plasmon polaritons. By using the finite-element method (FEM), we demonstrate that the fields are enhanced on the walls of metallic films, and thus minimizing significantly its presence inside …

research product

Engineered surface waves in hyperbolic metamaterials

We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves. This research was fu…

research product

Plasmon-driven nondiffracting surface beaming

We introduce diffraction-free plasmonic waves in metal-dielectric surfaces which are the analogue to nondiffracting Bessel beams in free space. By interfering multiple converging plane waves with controlled phase matching, we generate a subwavelength transverse spot located at the boundaries of a 1D plasmonic lattice. The diffraction-free beam is resonantly transmitted through the stratiform medium leading not only to light confinement but also to wave enhancement assisted by surface plasmons polaritons. To conclude, we briefly analyze other types of localized surface modes which were proposed recently.

research product

Uniaxial epsilon-near-zero metamaterials: from superlensing to double refraction

We investigated optical properties of nanostructured metal-dielectric multilayered lattices under the conditions of epsilon-near-zero (ENZ), a concept derived from the effective-medium approach (EMA). We theoretically found that the periodic array of metallic nanolayers may exhibit either superlensing driven by broadband canalization from point emitters or single-polarization double refraction, and conventional positive as well as negative, even at subwavelength regimes. For the latter case, we formulated a modified EMA, and subsequently a generalized refraction law, that describes both refractive behaviors concurrently. The modal coupling of plasmonic lattice resonances, and nonlocality in…

research product

Nondiffracting Bessel plasmons.

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude. This research was funded by the Spanish Mini…

research product

Novel prospects in hyperbolic metamaterials: Dyakonov-like surface waves

research product

Propagation of Dyakonon Wave-Packets at the Boundary of Metallodielectric Lattices

We rigorously analyze the propagation of localized surface waves that takes place at the boundary between a semi-infinite layered metal-dielectric (MD) nanostructure cut normally to the layers and a isotropic medium. It is demonstrated that Dyakonov-like surface waves (also coined dyakonons) with hybrid polarization may propagate in a wide angular range. As a consequence, dyakonon-based wave-packets (DWPs) may feature sub-wavelength beamwidths. Due to the hyperbolic-dispersion regime in plasmonic crystals, supported DWPs are still in the canalization regime. The apparent quadratic beam spreading, however, is driven by dissipation effects in metal. This work was supported by the Spanish Mini…

research product

Surface waves in plasmonic anisotropie media

We investigate the spatial dispersion of hybrid-polarized surface waves excited at the boundary of a semi-infinite layered metal-dielectric nanostructure. We put emphasis in the case that the thickness of a metal layer becomes of the order of the metal skin depth. We demonstrate that the use of the so-called effective medium approximation (EMA) is not justified, in general. For that purpose, we compare the results using the EMA model and numerical simulations based on the finite-element method. We include an analysis of the influence of metallic losses.

research product

Dyakonons in hyperbolic metamaterials

We have analyzed surface-wave propagation that takes place at the boundary between an isotropic medium and a semi-infinite metal-dielectric periodic medium cut normally to the layers. In the range of frequencies where the periodic medium shows hyperbolic space dispersion, hybridization of surface waves (dyakonons) occurs. At low to moderate frequencies, dyakonons enable tighter confinement near the interface in comparison with pure SPPs. On the other hand, a distinct regime governs dispersion of dyakonons at higher frequencies. Full Text: PDF References Z. Ruan, M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface", Ap…

research product

Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers

AbstractWe investigate, both theoretically and numerically, a graphene-coated nano-cylinder illuminated by a plane electromagnetic wave in the far-infrared range of frequencies. We have derived an analytical formula that enables fast evaluation of the spectral window with a substantial reduction in scattering efficiency for a sufficiently thin cylinder. This polarization-dependent effect leads to tunable resonant invisibility that can be achieved via modification of graphene chemical potential monitored by the gate voltage. A multi-frequency cloaking mechanism based on dimer coated nanowires is also discussed in detail.

research product

Dyakonov-like surface waves in semi-infinite metal-dielectric lattices

We demonstrated the existence of Dyakonov-like surface waves propagating at the boundary between a metal-insulator lattice and an isotropic dielectric. A range of propagation angles substantially greater than that for conventional birefringent materials is obtained, and with reasonably small losses.

research product

Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice

We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses. This research was funded by the Qatar National Research Fund under the project NPRP 09-462-1-074, by the Spanish Ministry of Economy and Competitiveness under the project TEC2009-11635, and by the Serbia…

research product

Oblique surface waves at an interface between a metal–dielectric superlattice and an isotropic dielectric

We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thick…

research product