0000000000033816

AUTHOR

Mikk Vahtrus

Analysis of static friction and elastic forces in a nanowire bent on a flat surface: A comparative study

ZnO nanowires bent to a complex shape and held in place by static friction force from supporting flat surface are investigated experimentally and theoretically. The complex shapes are obtained by bending the nanowires inside a scanning electron microscope with a sharp tip attached to a nanopositioner. Several methods previously described in the literature are applied along with author's original method to calculate the distributed friction force and stored elastic energy in the nanowires from the bending profile. This comparative study evidences the importance of the usage of appropriate models for accurate analysis of the nanowires profile. It is demonstrated that incomplete models can lea…

research product

Mechanical properties of sol–gel derived SiO2 nanotubes

The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values…

research product

Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations

In the present work, we demonstrate a novel approach to nanotribological measurements based on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable half-suspended configuration inside a scanning electron microscope. A pick-and-place manipulation technique was used to control the length of the adhered part of each suspended NW. Static and kinetic friction were found by a 'self-sensing' approach based on the strain profile of the elastically bent NW during manipulation and its Young's modulus, which was separately measured in a three-point bending test with an atomic force microscope. The calculation of static friction from the most bent state was completely reconsidered…

research product

Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.

Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…

research product

Effect of cobalt doping on the mechanical properties of ZnO nanowires

Abstract In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indica…

research product

Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

Abstract We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and afte…

research product

Shape restoration effect in Ag-SiO2 core-shell nanowires.

The combination of two different materials in a single composite core–shell heterostructure can lead to improved or even completely novel properties. In this work we demonstrate the enhancement of the mechanical properties of silver (Ag) nanowires (NW) achieved by coating them with a silica (SiO2) shell. In situ scanning electron microscope (SEM) nanomechanical tests of Ag–SiO2 core–shell nanowires reveal an improved fracture resistance and an electron-beam induced shape restoration effect. In addition, control experiments are conducted separately on uncoated Ag NWs and on empty SiO2 shells in order to gain deeper insight into the peculiar properties of Ag–SiO2. Test conditions are simulate…

research product

Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques

Abstract In this work TiO2 nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties.

research product

Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core–shell nanowires

The proper choice of coating materials and methods in core–shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core–shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating effic…

research product