6533b82cfe1ef96bd128ecc1

RESEARCH PRODUCT

Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations

Rünno LõhmusSven OrasBoris PolyakovMikk VahtrusMikk AntsovLeonid M. DoroginKrisjanis SmitsAndris ŠUtkaAndris ŠUtkaSergei Vlassov

subject

Work (thermodynamics)Materials scienceScanning electron microscopeMechanical EngineeringBent molecular geometryZno nanowiresModulusBioengineering02 engineering and technologyGeneral ChemistryBending021001 nanoscience & nanotechnology01 natural sciencesCharacterization (materials science)Flexural strengthMechanics of Materials0103 physical sciencesGeneral Materials ScienceElectrical and Electronic EngineeringComposite material010306 general physics0210 nano-technology

description

In the present work, we demonstrate a novel approach to nanotribological measurements based on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable half-suspended configuration inside a scanning electron microscope. A pick-and-place manipulation technique was used to control the length of the adhered part of each suspended NW. Static and kinetic friction were found by a 'self-sensing' approach based on the strain profile of the elastically bent NW during manipulation and its Young's modulus, which was separately measured in a three-point bending test with an atomic force microscope. The calculation of static friction from the most bent state was completely reconsidered and a novel more realistic crack-based model was proposed. It was demonstrated that, in contrast to assumptions made in previously published models, interfacial stresses in statically bent NW are highly localized and interfacial strength is comparable to the bending strength of NW measured in respective bending tests.

https://doi.org/10.1088/0957-4484/27/33/335701