0000000000034737
AUTHOR
Andris ŠUtka
Yttrium-doped hematite photoanodes for solar water splitting: Photoelectrochemical and electronic properties
Abstract We investigate yttrium-doped hematite thin-film photoelectrochemical properties and find yttrium incorporation to amply improve the performance as a photoanode for water splitting under visible light. We used the spray pyrolysis method to prepare a set of yttrium doped Fe2-xYxO3 (x = 0, 0.05, 0.10, 0.15, 0.2) thin films (thickness below 500 nm) on glass and transparent conductive oxide coated glass slides. Using a substitutional homovalent (Y3+) dopant, the effect on functionality is rationalised as a combined effect on the electronic structure and small polaron mobility from the lattice structure, impurity levels, lattice stability and variance in hybridisation. The photoelectroch…
Matching the Directions of Electric Fields from Triboelectric and Ferroelectric Charges in Nanogenerator Devices for Boosted Performance
Summary Embedding additional ferroelectric dipoles in contacting polymer layers is known to enhance the performance of triboelectricnanogenerator (TENG) devices. However, the influence of dipoles formed between the triboelectric surface charges on two contacting ferroelectric films has been ignored in all relevant studies. We demonstrate that proper attention to the alignment of the distinct dipoles present between two contacting surfaces and in composite polymer/BaTiO3 ferroelectric films can lead to up to four times higher energy and power density output compared with cases when dipole arrangement is mismatched. For example, TENG device based on PVAc/BaTiO3 shows energy density increase f…
Mechanical reinforcement of electrospun poly(vinyl alcohol) by α-FeOOH nanowires
The authors kindly acknowledge the financial support of the Estonian Research Council for the post-doctoral research grants of personal research funding in projects PUT1096 and PUTJD578 as well as Institutional Research Funding Projects, IUT20-17, and IUT23-7.
Identifying Iron-Bearing Nanoparticle Precursor for Thermal Transformation into the Highly Active Hematite Photo-Fenton Catalyst
Funding: This reseach was funded by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/1/16/157).
Spectrometric analysis of inner divertor materials of JET carbon and ITER-like walls
Abstract One of main reasons of the Joint European torus (JET) transformation from the carbon (JET-C) to ITER-like (JET-ILW) wall was high tritium retention of carbon. In order to compare the tritium retention, samples of analogous positions of the plasma-facing side of vertical tiles No. 3 of two campaigns: JET-C (2008–2009) and JET-ILW (2011–2012) were cut out. Temperature-programmed tritium desorption spectrometry in He + 0.1% H2 gas flow showed that JET-C sample without a tungsten coating had by a factor of >20 higher surface concentration of tritium than JET-ILW tungsten-coated sample: 4.9 × 1013 and 1.7–2.2 × 1012 T atoms/cm2 respectively. Installation of metallic plasma facing wall i…
Triboelectrification of nanocomposites using identical polymer matrixes with different concentrations of nanoparticle fillers
In this study, we investigate triboelectrification in polymer-based nanocomposites using identical polymer matrixes containing different concentrations of nanoparticles (NPs). The triboelectric surface charge density on polymer layers increased as the difference in nanoparticle filler concentration between the two triboelectric layers escalated, despite the fact that the polymer matrix was the same in both layers. This effect was observed in tests of various polymer types and filler NPs. Our mechanical experiments and finite element analysis simulations confirmed that polymeric triboelectrification is related to the surface viscoelastic deformation that occurs during mechanical contact and …
Identification of Active Sites for Oxygen Reduction Reaction on Nitrogen- and Sulfur-Codoped Carbon Catalysts
This research was financially supported by ERA.Net RUS Plus funding mechanism (Project HeDoCat) and by the European Regional Development Fund project TK134.
Gas sensing properties of Zn-doped p-type nickel ferrite
Abstract The influence of zinc ion to the NiFe2O4 p-type semiconductor gas response characteristics is demonstrated. For characterization of gas sensor material, synthesized by sol–gel auto combustion method, X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistance and impedance spectroscopy (IS) measurements were employed. The response change of Zn doped nickel ferrite is related to the interruption of hole hopping between nickel ions. This was improved by change of conductivity type with temperature and gas exposure.
Properties of Ni–Zn ferrite thin films deposited using spray pyrolysis
Abstract Nanocrystalline, homogeneous spinel Ni 1 − x Zn x Fe 2 O 4 thin films were deposited on glass substrates by using spray pyrolysis of metal nitrate aqueous solutions. The thickness of deposited films was below 500 nm, but crystallite size was under 30 nm. It has been shown that the DC resistivity, dielectric loss and optical band gap of deposited films are influenced by the zinc content. High DC resistivity and low dielectric losses of thin Ni 1 − x Zn x Fe 2 O 4 films are explained by mixed n-p conductivity and nanograin structure of spray pyrolysis deposited coatings which are changing with the ratio of Ni/Zn.
The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators
This research was supported by the European Regional Development Fund within the project ‘‘Hybrid energy harvesting systems’’ 1.1.1.1./16/A/013.
Switchable Light Reflectance in Dilute Magneto-Optical Colloids Based on Nickel Ferrite Nanowires
Photodoping-Inspired Room-Temperature Gas Sensing by Anatase TiO2 Quantum Dots
Detection of volatile organic compounds (VOCs) at room temperature in an ambient environment is highly desired, but still a distant function for gas sensor materials. Here, we are demonstrating a p...
Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri
This research and work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 (i.e., “to increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure”) of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/2/18/331).
Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures
Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO nanostructures are well known templates for optical sensors and biosensors. The combination of ZnO and PDA results in a change of optical properties of ZnO&ndash
Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures
Abstract Magnetite nanoparticles were precipitated from a pure aqueous ferrous salt solution in an air atmosphere. The influence of the solution molarity, the rate of precipitator agent addition, stirring time and annealing temperature was studied. The morphology, crystalline phase purity and magnetic properties of the obtained powders were studied by X-Ray powder diffraction (XRD), Scanning electron microscopy (SEM), Differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and Vibrating sample magnetometer (VSM). The synthesis conditions were seen to have an effect on phase composition. It was possible to obtain near stoichiometric Fe…
Aqueous synthesis of Z-scheme photocatalyst powders and thin-film photoanodes from earth abundant elements
Riga Technical University supported the preparation of this manuscript from the Scientific Research Project Competition for Young Researchers No. ZP 2017/8
Photocatalytic activity of anatase-nickel ferrite heterostructures
The simple co-precipitation route was used to couple commercial TiO2 anatase nanopowder with nickel ferrite (NiFe2O4). The morphology and the crystalline structure of composite nanoparticles were characterised by TEM, N2 adsorption-desorption, XRD and Rietveld refinement, XPS and XAS. The optical and magnetic properties were investigated. After co-precipitation NiFe2O4 nanoparticles, composed of spinel ferrite crystal phase, were formed on the surface of TiO2 anatase nanopowder. The TiO2/NiFe2O4 composite oxide demonstrated large specific surface area, high visible light absorption efficiency and efficient charge carrier separation, compared to pristine anatase TiO2 or pristine NiFe2O4, rep…
Tribovoltaic Device Based on the W/WO3 Schottky Junction Operating through Hot Carrier Extraction
Strong, Rapid and Reversible Photochromic Response of Nb doped TiO2 Nanocrystal Colloids in Hole Scavenging Media
Understanding photochromicity is essential for developing new means of modulating the optical properties and optical response of materials. Here, we report on the synthesis and exciting new photochromic behavior of Nb5+ doped TiO2 nanoparticle colloids (NCs). We find that in hole scavenging media, Nb5+ doping significantly improves the photochromic response time of TiO2 nanoparticles. In the infrared regime, Nb-doped TiO2 NCs exhibit an order of magnitude faster photoresponse kinetics than the pristine TiO2. Enhanced photochromic response is observed in the visible light regime as well. The transmittance of Nb-doped TiO2 NCs drops to 10% in less than 2 minutes when irradiated by UV light in…
Magnetic and optical properties in degenerated transition metal and Ga co-substituted ZnO nanocrystals
Abstract In order to study the influence of itinerant electrons on magnetic properties of transition metal substituted ZnO nanocrystals, nanopowders containing different amounts of Ga and fixed amounts of Fe, Ni and Mn ions were synthesized. The ions of different transition metals and Ga were successfully introduced into the ZnO structure using solvothermal synthesis method. X-ray diffraction, scanning electron microscopy, hard X-ray photoelectron spectroscopy and Rietveld refinement were used to characterize the synthesized nanocrystals. Optical measurements revealed that Ga substitution can change the light transmittance/absorption in the infrared part of the electromagnetic light spectru…
Sol-gel auto-combustion synthesis of Ca2Fe2O5 brownmillerite nanopowders and thin films for advanced oxidation photoelectrochemical water treatment in visible light
Abstract This study describes a straightforward Ca2Fe2O5 brownmillerite nanopowder and thin film synthesis by the water-based sol-gel auto-combustion method. The material characterization results confirmed the phase pure narrow bandgap Ca2Fe2O5 nanoparticle formation. The surface area of synthesized nanopowder was 13.55 m2/g. Powders at loading 1 g/l exhibit high visible light photocatalytic activity by degrading 10 mg/l methylene blue in water in 120 min confirmed by total organic carbon studies. The high visible light photocatalytic activity is related to Ca2Fe2O5 narrow band gap and high reduction potential of its conduction band which triggers the formation of superoxide radical ∙ O 2 -…
Effect of antisite defects on the magnetic properties of ZnFe2 O4
Magnetic zinc ferrite (ZnFe2O4) nanopowders were synthesized using the sol–gel autocombustion method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements demonstrated that thermal decomposition of the 1-mm-thick xerogel layers in air formed monophasic spinel ferrite nanopowders with a particle size less than 30 nm. X-ray photoelectron spectroscopy (XPS) showed that the obtained reaction product contained antisite defects, with zinc ions occurring at the octahedral sites of the spinel structure. The concentration of antisite defects or inversion degree decreased when the relatively low annealing temperature was increased from 150 to 500 °C. Overall, the obtained ZnFe2…
Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations
In the present work, we demonstrate a novel approach to nanotribological measurements based on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable half-suspended configuration inside a scanning electron microscope. A pick-and-place manipulation technique was used to control the length of the adhered part of each suspended NW. Static and kinetic friction were found by a 'self-sensing' approach based on the strain profile of the elastically bent NW during manipulation and its Young's modulus, which was separately measured in a three-point bending test with an atomic force microscope. The calculation of static friction from the most bent state was completely reconsidered…
CO2 turned into a nitrogen doped carbon catalyst for fuel cells and metal–air battery applications
Heteroatom doped metal-free catalysts are one of the most promising replacements for platinum for the alkaline oxygen reduction reaction (ORR). Due to the lack of metal atoms, they are extremely stable and environmentally friendly. However, production of carbon nanomaterials can have a very high CO2 footprint. In this study, we present ORR catalysts made directly from CO2via molten salt CO2 electrolysis. The deposited carbon powder is doped with nitrogen using pyrolysis in the presence of dicyandiamide. The effect of molten carbonate electrolyte composition towards the final ORR activity in 0.1 M KOH is studied. A thorough physico-chemical study of the starting carbons and N-doped catalysts…
Electric and dielectric properties of nanostructured stoichiometric and excess-iron Ni–Zn ferrites
In this paper, we report a study of the effect of excess iron on structural, microstructural, electric and dielectric properties of the nanostructured Ni–Zn ferrites Ni1−xZnxFe2+zO4−δ of different compositions with x = 0, 0.3, 0.5, 0.7, 1 and z = 0, 0.1. The structural and microstructural properties are estimated from x-ray diffraction and atomic force microscopy (AFM) data. The average grain size, evaluated from AFM topographical analysis, is found to be below 70 nm. The samples exhibit low values of dielectric constant and dielectric loss and a high resistivity. Contrary to earlier conclusions regarding microstructured Ni–Zn ferrites, in nanostructured Ni–Zn ferrites sintered at relativel…
Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation
Riga Technical University supported the preparation of this manuscript from the Scientific Research Project Competition for Young Researchers No. ZP-2016/7. The authors wish to kindly acknowledge the financial support of HZB, Estonian Research Council (PUT1096, PUT735 and IUT2-25) and Estonian Centre of Excellence in Research Project “Advanced materials and high-technology devices for sustain-able energetics, sensorics and nanoelectronics” TK141 (2014–2020.4.01.15-0011).
Effect of cobalt doping on the mechanical properties of ZnO nanowires
Abstract In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indica…
Ag sensitized TiO2 and NiFe2O4 three-component nanoheterostructures: synthesis, electronic structure and strongly enhanced visible light photocatalytic activity
This study reports on the synthesis and characterisation of two- and three-component visible light active photocatalytic nanoparticle heterostructures, based on TiO2 and NiFe2O4 and sensitized with Ag. We observe that a Ag content as small as 1 at% in the TiO2/NiFe2O4 heterostructure increases by more than an order of magnitude the rate constant for the visible light photocatalytic process. We rationalise this in terms of the measured structure and electronic structure data of the binary and ternary combinations of the component materials and focus on details, which show that an optimised deposition sequence is vital for attaining high values of photocatalytic efficiency, because the charge…
Rapid Catalytic Water Disinfection from Earth Abundant Ca 2 Fe 2 O 5 Brownmillerite
Water disinfection is a crucial challenge for humanity. Approaches that are effective, cheap, environmentally friendly, and do not promote gene exchange between bacteria are urgently required. Strongly oxidizing radicals are highly promising to achieve this as they lead to bacterial activation at high efficiencies. However, sources to consistently generate these radicals are limited to high energy UV/H2O2 treatments requiring a large energy input. Here the use of abundant, cheap, brownmillerite (Ca2Fe2O5) is demonstrated as an efficient radical generation material under dark conditions, showing a seven order of magnitude decrease in bacterial concentration over 10 min. This decrease is attr…
Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate
Financial support from the Estonian Research Council (IUT2-25, PUT170, PUT1096, PUT748, PUTJD680), the Estonian Centre of Excellence in Research Projects “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics” TK141 (2014-2020.4.01.15-0011), “Emerging orders in quantum and nanomaterials” TK134 and the Development Fund of the University of Tartu, are all gratefully acknowledged.
Photocatalytic activity of non-stoichiometric ZnFe2O4under visible light irradiation
Nanostructured zinc ferrites with different excess iron contents (ZnFe2+zO4, where z = 0.00, 0.05, 0.10 and 0.15) have been synthesized using the sol–gel auto-combustion method. The effect of excess iron on the structural, optical and visible light photocatalytic activity of zinc ferrite samples has been investigated. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), x-ray magnetic circular dichroism (XMCD), Brunauer–Emmett–Teller theory, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV–Vis) and photoluminescence spectroscopy were used to characterize the synthesized non-stoichiometric ZnFe2O4 powders. The XRD patterns demonstrated that the samples con…
Solvothermal synthesis derived Co-Ga codoped ZnO diluted magnetic degenerated semiconductor nanocrystals
Authors kindly acknowledge to the Estonian Research Council ( PUT1096 , IUT2-25 , PUT735 ), the Estonian Centre of Excellence in Research project “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics (TK141), and the financial support of HZB. We are grateful to the staff of BESSY II for the assistance and co-operation during the synchrotron-based measurements.
Permanent photodoping of plasmonic gallium-ZnO nanocrystals
This work was supported by the Latvian Council of Science in the framework of FLPP (Plasmonic oxide quantum dots for energy saving smart windows, lzp-2018/1-0187). Tanel Käämbre acknowledges financial support for the XPS instrumentation maintenance from the Estonian Centre of Excellence in Research project “Advanced materials and high- technology devices for sustainable energetics, sensorics and nanoelectronics” (TK141).
Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques
Abstract In this work TiO2 nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties.
Co doped ZnO nanowires as visible light photocatalysts
Abstract High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visi…
Influence of iron non-stoichiometry on spinel zinc ferrite gas sensing properties
Abstract It is demonstrated for the first time that the gas sensing properties of a spinel ferrite complex metal oxide semiconductor can be improved by controlling iron stoichiometry. Conductivity and sensitivity was analyzed for ZnFe2+zO4± spinel type ferrite with z from −0.01 to 0.15. By increasing iron content from z = −0.01 to z = 0.1, sensitivity increases up to 3 times but for samples with z > 0.1 sensitivity drops. It was observed from impedance spectroscopy measurements that resistance decreases with an increase of the iron content. Complex impedance spectra reveal two phases with different resistance attributed to depletion layer (Rd) and bulk (Rb). With increasing iron content inc…
Membrane-less amphoteric decoupled water electrolysis using WO 3 and Ni(OH) 2 auxiliary electrodes
This work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/3/19/466). Institute of Solid-State Physics, the University of Latvia as the Centre of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement no. 739508, project CAMART. 2
PVA Hydrogel Electrolyte and Porous Polyisoprene Carbon Nanostructure Composite Based Pressure Sensitive Supercapacitor
Special gratitude is in order to Raimonds Orlovs for temperature dependent resistance measurements. Financial support of project 1.1.1.1/16/A/013, “Hybrid energy harvesting systems” is greatly appreciated.
Photocatalytic Activity of TiO2 Coatings Obtained at Room Temperature on a Polymethyl Methacrylate Substrate
Titanium dioxide (TiO2) coatings have a wide range of applications. Anatase exhibits hydrophilic, antimicrobial, and photocatalytic properties for the degradation of organic pollutants or water splitting. The main challenge is to obtain durable anatase nanoparticle coatings on plastic substrates by using straightforward approaches. In the present study, we revealed the preparation of a transparent TiO2 coating on polymethylmethacrylate (PMMA), widely used for organic optical fibres as well as other polymer substrates such as polypropylene (PP), polystyrene (PS), and polycarbonate (PC). The films were spin-coated at room temperature without annealing; therefore, our approach can be used for …
Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates
Flexible antibacterial materials have gained utmost importance in protection from the distribution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibacterial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene, poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer was obtained when tolu…
Hybrid Tribo-Piezo-Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers
This research was supported by the European Regional Development Fund within the project ‘‘Hybrid energy harvesting systems’’ 1.1.1.1./16/A/013.
Photoelectrochemical Bisphenol S Sensor Based on ZnO‐Nanoroads Modified by Molecularly Imprinted Polypyrrole
Molecularly imprinted polymers are important tools for the design of sensors and other molecular recognition based analytical systems. In this paper the development of a photoelectrochemical sensor for selective bisphenol determination is reported. The sensor is based on a glass/ZnO/MIP‐Ppy structure consisting of glass modified by a ZnO layer (glass/ZnO), which is functionalized by molecularly imprinted conducting polymer polypyrrole (MIP‐Ppy). The sensitivity of the sensor to bisphenol is in the range of 0.7–12.5 µm. Selectivity tests to other bisphenolic compounds are performed. Some aspects of a photoinduced response mechanism in glass/ZnO/MIP‐Ppy nanostructures are predicte…
Precipitation synthesis of magnetite Fe3O4 nanoflakes
Precipitation can be applied to synthesize magnetite Fe3O4 nanoflakes in an ambient air atmosphere without using any surfactant, templates or special equipment. Magnetite nanoflakes were precipitated from only Fe2+ chloride solution without adding Fe3+. The formation of Fe3O4 nanoflakes is suggested to occur due to formation of an intermediate goethite phase, thus providing anisotropic crystal growth. Compared to other methods, the method presented here is fast and suitable for large scale synthesis.
Reversible Photodoping of TiO2 Nanoparticles for Photochromic Applications
Financial support from the Estonian Research Council (IUT2-25, IUT2-26, and PUTJD680) is gratefully acknowledged. This work was supported by the Academy of Finland (decision numbers 141481 and 286713) and by the EU through the European Regional Development Fund (Center of Excellence for Zero Energy and Resource Efficient Smart Buildings and Districts-ZEBE, 2014-2020.4.01.15-0016). Work is supported by the Latvian Academy of Sciences in the framework of FLPP (Plasmonic oxide quantum dots for energy saving smart windows, lzp-2018/1-0187).
Comparison of the electrochemical properties of hematite thin films prepared by spray pyrolysis and electrodeposition
Abstract This manuscript reports differences between the photoelectrochemical (PEC) activity of hematite (α-Fe 2 O 3 ) photoanodes produced by cathodic electrodeposition (ED) and spray pyrolysis (SP) methods. Both methods yield nanostructured polycrystalline α-Fe 2 O 3 thin films without additional impurity phases. However, α-Fe 2 O 3 produced by ED is characterised to have better crystallinity and higher porosity, which was confirmed by XRD and SEM analysis. Owing to this, α-Fe 2 O 3 obtained by ED generates a photocurrent that is 2.5 times higher than α-Fe 2 O 3 thin films prepared by SP. Furthermore, the influence of the thickness of the α-Fe 2 O 3 thin films on the flat-band potential p…
Triboelectric behaviour of selected MOFs in contact with metals
This work was funded by Latvian-Lithuanian-Taiwan Scientific Cooperation Support Fund (LV-LT-TW/2021/3) represented by the Research Council of Lithuania (Project Nr. S-LLT-21-2) and Latvian Council of Science (Project Nr. 03000-3.1.2.1-e/3). Fa-Kuen Shieh would like to thank the Ministry of Science and Technology, Taiwan, for funding support (MOST 110-2923-M-008-002-MY3). Part of the measurements were performed on equipment located at the Center of Excellence at the Institute of Solid State Physics, University of Latvia, which is supported by European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2. O. Ve…