Analysis of static friction and elastic forces in a nanowire bent on a flat surface: A comparative study
ZnO nanowires bent to a complex shape and held in place by static friction force from supporting flat surface are investigated experimentally and theoretically. The complex shapes are obtained by bending the nanowires inside a scanning electron microscope with a sharp tip attached to a nanopositioner. Several methods previously described in the literature are applied along with author's original method to calculate the distributed friction force and stored elastic energy in the nanowires from the bending profile. This comparative study evidences the importance of the usage of appropriate models for accurate analysis of the nanowires profile. It is demonstrated that incomplete models can lea…
Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface
Friction forces for a nanowire (NW) elastically bent on flat substrate were investigated both theoretically and experimentally. Models based on elastic beam theory were proposed considering balance of external, frictional, and elastic forces along the NW. The distributed friction force was determined for two cases: (i) the NW was uniformly dragged at its midpoint and bent by kinetic friction forces and (ii) the NW was held in a bent state by static friction forces. The first case considers a uniform distribution of kinetic friction along the NW and enables the measurement of the friction force from the elastically deformed NW profile. The second case exploits the interplay between static fr…
Elasticity and yield strength of pentagonal silver nanowires: In situ bending tests
This paper reports in situ mechanical characterization of silver nanowires (Ag NWs) inside a scanning electron microscope using a cantilevered beam bending technique. Measurements consisted in controlled bending of a cantilevered NW by the tip of an atomic force microscope glued to the force sensor. Relatively high degree of elasticity followed by either plastic deformation or fracture was observed in bending experiments. Experimental data were numerically fitted into the model based on the elastic beam theory and values of Young modulus and yield strength were extracted. Measurements were performed on twenty Ag NWs with diameters from 76 nm to 211 nm. Average Young modulus and yield streng…
Towards metal chalcogenide nanowire-based colour-sensitive photodetectors
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2016/6 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Authors are grateful to Reinis Ignatans for XRD measurements.
Au nanowire junction breakup through surface atom diffusion.
Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 degrees C, 400 degrees C, 600 degrees C and 700 degrees C) during a time period of 10 min. We show that nanowires are especially prone to fragmentatio…
Processing of amorphous Si by pulsed laser irradiation at different wavelengths
Amorphous Si thin films deposited on thermally oxidized Si wafers have been processed by the 2 nd and 3 rd harmonics of Nd:YAG laser. Surface modification of amorphous silicon layers have been investigated by scanning electron microscopy before and after chemical etching of processed silicon films. The super-lateral crystal growth regime was achieved with laser fluence of 280 mJ/cm 2 for the 2 nd harmonics and 155 mJ/cm 2 for the 3 rd harmonics. The grain size in polycrystalline Si samples prepared by successive crystallization in the lateral growth regime is about 0.5 - 1 μm.
Nanoscale X-ray detectors based on individual CdS, SnO2 and ZnO nanowires
Abstract The development of nanoscale X-ray sensors is of crucial importance to achieve higher spatial resolution in many X-ray-based techniques playing a key role in materials science, healthcare, and security. Here, we demonstrate X-ray detection using individual CdS, SnO 2 , and ZnO nanowires (NWs). The NWs were produced via vapor–liquid–solid technique and characterized using X-ray diffraction, scanning, and transmission electron microscopy . Electrical measurements were performed under ambient conditions while exposing two-terminal NW-based devices to X-rays generated by a conventional tungsten anode X-ray tube. Fast and stable nanoampere-range X-ray beam induced current (XBIC) in resp…
Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures
This research was funded by the ERDF project “Smart Metal Oxide Nanocoatings and HIPIMS Technology”, project number: 1.1.1.1/18/A/073. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Financial support provided by Scientific Research Project for Students and Young Researchers, Latvia Nr. SJZ/2018/7 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.
Mechanical properties of sol–gel derived SiO2 nanotubes
The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values…
Electron beam induced growth of silver nanowhiskers
Abstract In this paper we report an electron beam induced rapid (up to several tens of nm/s) growth of silver nanowhiskers from silver nanowire networks coated with TiO 2 by sol–gel method. Different growth conditions are tested and it is demonstrated that growth is optimal for samples with the film thickness in the range 50–200 nm and previously annealed at 400 °C for 5–10 min. Growth mechanism is attributed to cooperative effect of several factors including diffusion of Ag into TiO 2 matrix during annealing, electromigration of Ag atoms caused by strong electric field, and presence of mechanical stresses at interfaces enhanced by thermal expansions due to local heating under e-beam illumi…
Unexpected Epitaxial Growth of a Few WS2 Layers on {11̅00} Facets of ZnO Nanowires
Core–shell nanowires are an interesting and perspective class of radially heterostructured nanomaterials where epitaxial growth of the shell can be realized even at noticeable core–shell lattice mismatch. In this study epitaxial hexagonally shaped shell consisting of WS2 nanolayers was grown on {1100} facets of prismatic wurtzite-structured [0001]-oriented ZnO nanowires for the first time. A synthesis was performed by annealing in a sulfur atmosphere of ZnO/WO3 core–shell structures, produced by reactive dc magnetron sputtering of an amorphous a-WO3 layer on top of ZnO nanowire array. The morphology and phase composition of synthesized ZnO/WS2 core–shell nanowires were confirmed by scanning…
Some aspects of pulsed laser deposition of Si nanocrystalline films
International audience; Nanocrystalline silicon films were deposited by a picosecond laser ablation on different substrates in vacuum at room temperature. A nanocrystalline structure of the films was evidenced by atomic force microscopy (AFM), optical and Raman spectroscopies. A blue shift of the absorption edge was observed in optical absorption spectra, and a decrease of the optical phonon energy at the Brillouin zone centre was detected by Raman scattering. Early stages of nanocrystalline film formation on mica and HOPG substrates were studied by AFM. Mechanism of nanocrystal growth on substrate is discussed.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
Authors are grateful to Reinis Ignatans for XRD measurements.
Excited States Calculations of MoS2@ZnO and WS2@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications
This research was funded by the Latvian Scientific Council grant LZP-2018/2-0083. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union's Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.
Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide
Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10−4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10−3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed.
Kinking in Semiconductor Nanowires: A Review
The growth direction of nanowires (NWs) can change during synthesis as a result of stochastic processes or modulation of certain growth conditions. This phenomenon is known as kinking. Although deviations from a uniform vertical growth are typically considered to be undesirable, kinking opens a route for additional tweaking of the characteristics and functionalities of NWs in a controllable manner, thus extending the range of potential applications. In the present Review, we give an insight into the kinking mechanisms and summarize the most crucial factors that can lead to kinking of NWs during synthesis. Additionally, the properties and applications of kinked NWs are discussed. © 2021 The …
Plasmonic photoluminescence enhancement by silver nanowires
Strong enhancement of photoluminescence is demonstrated for CdS nanocrystals and ruthenium-based dye (N719) due to localized surface plasmon resonance of silver nanowires placed on silver film. Alternative reasons for photoluminescence modulation such as mirror effect and uneven coating by dye or nanocrystals due to geometrical factors are discussed. An artifact such as carbon contamination at the surface of silver nanowires at high laser power is demonstrated and taken into consideration. Silver nanowire on silver film is proved to be an effective system for photoluminescence enhancement by localized surface plasmon resonance.
Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope
Abstract A real-time nanomanipulation technique inside a scanning electron microscope (SEM) has been used to investigate the elastic and frictional (tribological) properties of zinc oxide nanowires (NWs). A NW was translated over a surface of an oxidised silicon wafer using a nanomanipulator with a glued atomic-force microscopic tip. The shape of the NW elastically deformed during the translation was used to determine the distributed kinetic friction force. The same NW was then positioned half-suspended on edges of trenches cut by a focused ion beam through a silicon wafer. In order to measure Young’s modulus, the NW was bent by pushing it at the free end with the tip, and the interaction f…
High-Density Arrays of Germanium Nanowire Photoresistors
Here we present for the first time a study of the photoresistive properties and dynamics of ordered, high-density arrays of germanium nanowire photoresistors. Germanium is a wellknown semiconducting material with an indirect bandgap, Eg, of approximately 0.66 eV (temperature T = 300 K) and has been widely used for the fabrication of photodetectors, radiation detectors, charged particle and photon tracking devices, far-infrared photoresistors, and numerous other devices. During the last few years there has also been increasing interest in the use of nanostructures (quantum dots and wires) of both germanium and silicon as materials for potential applications in sensors, nanophotonics, and nan…
Structure and characteristics of laser crystallized thin amorphous Si films
Abstract Pure amorphous Si thin films deposited on oxidized crystalline Si surface (111) were crystallized by picosecond UV laser pulses. The Raman scattering spectra show that pulse energy of 330 mJ/cm2 is enough to fully crystallize Si film and further increase of the energy does not improve crystallinity. A large grained polycrystalline Si was obtained as revealed by surface analysis. A significant increase in carrier mobility was observed after laser crystallization.
Study of the High-Frequency Inductive Coupled Discharge Plasma Interaction with Walls
The high-frequency electrodeless light sources (HFELS) are widely used as bright radiators of narrow and intense spectral lines covering the region from VUV to IR. Special HFELS filled with pure helium at pressures from 0.2 to 5 Torr were prepared for diagnostics of interaction between the filling element and the wall material (glass). Pollution of the discharge plasma with the oxygen admixture was studied by spectroscopy. Atomic force microscopy experiments were performed to find modification of the wall surface at the nanoscale level. Release of oxygen by the walls is found to depend strongly on the discharge conditions and significant changes of the surface structure are detected after p…
Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations
In the present work, we demonstrate a novel approach to nanotribological measurements based on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable half-suspended configuration inside a scanning electron microscope. A pick-and-place manipulation technique was used to control the length of the adhered part of each suspended NW. Static and kinetic friction were found by a 'self-sensing' approach based on the strain profile of the elastically bent NW during manipulation and its Young's modulus, which was separately measured in a three-point bending test with an atomic force microscope. The calculation of static friction from the most bent state was completely reconsidered…
Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.
Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…
Conductive films of ordered nanowire arrays
peer-reviewed High-density, ordered arrays of germanium nanowires have been synthesised within the pores of mesoporous thin films (MTFs) and anodized aluminium oxide (AAO) matrices using a supercritical fluid solution-phase inclusion technique. Conductive atomic force microscopy (C-AFM) was utilised to study the electrical properties of the nanowires within these arrays. Nearly all of the semiconductor nanowires contained within the AAO substrates were found to be conducting. Additionally, each individual nanowire within the substrate possessed similar electrical properties demonstrating that the nanowires are continuous and reproducible within each pore. C-AFM was also able to probe the co…
Target Transportation of Auxin on Mesoporous Au/SiO2 Nanoparticles as a Method for Somaclonal Variation Increasing in Flax (L. usitatissimum L.)
Development of methods for direct delivery of different bioactive substances into the cell is a promising and intensively approached area of research. It has become a subject of serious research for multidisciplinary team of scientists working in such areas as physics, biology, and biotechnology. Plant calluses were grown on medium supplemented with different nanoparticles to be used as a model for biotechnological research. Gold nanoparticles with mesoporous silica coating were used as hormone carriers, since they possess many of critical properties required for cellular transportation instrument. Some of those properties are great biocompatibility and controlled release of carried molecul…
Manipulation of nanoparticles of different shapes inside a scanning electron microscope
In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed.
Object size effect on the contact potential difference measured by scanning Kelvin probe method
International audience; Contact potential difference (CPD) was measured by macroscopic Kelvin probe instrument and scanning Kelvin probe microscope on Al, Ni and Pt on ITO substrates at ambient conditions. CPD values measured by scanning Kelvin probe microscope and macroscopic Kelvin probe are close within the error of about 10-30% for large studied objects, whereas scanning Kelvin probe microscope signal decreases, when the object size becomes smaller than 1.4 m. CPD and electric field signals measured using many-pass technique allowed us to estimate the influence of electrostatic field disturbance, especially, in the case of small objects.
In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope
Abstract A novel method for measuring the kinetic friction force in situ was developed for zinc oxide nanowires on highly oriented pyrolytic graphite and oxidised silicon wafers. The experiments were performed inside a scanning electron microscope and used a nanomanipulation device as an actuator, which also had an atomic force microscope tip attached to it as a probe. A simple model based on the Timoshenko elastic beam theory was applied to interpret the elastic deformation of a sliding nanowire (NW) and to determine the distributed kinetic friction force.
Understanding the Conversion Process of Magnetron-Deposited Thin Films of Amorphous ReO$_x$ to Crystalline ReO$_3$ upon Thermal Annealing
Crystal growth & design 20(9), 6147 - 6156 (2020). doi:10.1021/acs.cgd.0c00848
Electric and elastic properties of conductive polymeric nanocomposites on macro- and nanoscales
Abstract In the past several years, the macroscopic electric and elastic properties of conductive polymeric composites have been studied from the viewpoint of such applications as thermistors and pressure sensors. In particular, we studied carbon black (CB) polymeric nanocomposites on macro- and nanoscales, using polyisoprene as the composite matrix. The filler component was an extra conductive carbon black (PRINTEX XE2, DEGUSSA) with a primary particle diameter of about 30 nm. A very strong reversible tensoresistive effect of electric resistance dependence on uniaxial tension deformation was observed in composites with the 10 carbon black mass parts added to 100 mass parts of polyisoprene.…
Unraveling the Structure and Properties of Layered and Mixed ReO3–WO3 Thin Films Deposited by Reactive DC Magnetron Sputtering
Tungsten trioxide (WO3) is a well-known electrochromic material with a wide band gap, while rhenium trioxide (ReO3) is a “covalent metal” with an electrical conductivity comparable to that of pure metals. Since both WO3 and ReO3 oxides have perovskite-type structures, the formation of their solid solutions (ReO3–WO3 or RexW1–xO3) can be expected, which may be of significant academic and industrial interest. In this study, layered WO3/ReO3, ReO3/WO3, and mixed ReO3–WO3 thin films were produced by reactive DC magnetron sputtering and subsequent annealing in air at 450 °C. The structure and properties of the films were characterized by X-ray diffraction, optical spectroscopy, Hall conductivity…
Metal nanodumbbells for nanomanipulations and tribological experiments
Nanomanipulation experiments were carried out on nanodumbbells (NDs) to study their kinetic behavior and tribological properties. Ag, Au and Cu NDs were produced by laser-induced melting of corresponding nanowires (NWs). NDs were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Manipulation experiments were performed first with atomic force microscope (AFM) at ambient conditions, and then inside SEM at high vacuum conditions. Different regimes of motion were observed. In-plane and out-of-substrate-plane rotation were identified as the most preferred motion types of NDs.
The effect of heat treatment on the morphology and mobility of Au nanoparticles
This work was supported by The Centre National de la Recherche Scientifique (CNRS) of France and the French Embassy Program. The authors are also grateful for partial support by COST Action CA15216, the Estonian Science Foundation (grants PUT1689 and PUT1372), the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts, ZEBE, grant 2014-2020.4.01.15.0016 and Latvian Science Council grant lzp-2018/2-0083.
Fast-Response Single-Nanowire Photodetector Based on ZnO/WS 2 Core/Shell Heterostructures
This work was supported by the Latvian National Research Program IMIS2 and ISSP project for Students and Young Researchers Nr. SJZ/2016/6. S.P. is grateful to the ERA.Net RUS Plus WATERSPLIT project no. 237 for the financial support. S.V. is grateful for partial support by the Estonian Science Foundation grant PUT1689.
Effect of cobalt doping on the mechanical properties of ZnO nanowires
Abstract In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indica…
Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers
Abstract We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and afte…
Some aspects of formation and tribological properties of silver nanodumbbells.
In this paper, metal nanodumbbells (NDs) formed by laser-induced melting of Ag nanowires (NWs) on an oxidized silicon substrate and their tribological properties are investigated. The mechanism of ND formation is proposed and illustrated with finite element method simulations. Tribological measurements consist in controllable real-time manipulation of NDs inside a scanning electron microscope (SEM) with simultaneous force registration. The geometry of NDs enables to distinguish between different types of motion, i.e. rolling, sliding and rotation. Real contact areas are calculated from the traces left after the displacement of NDs and compared to the contact areas predicted by the contact m…
Shape restoration effect in Ag-SiO2 core-shell nanowires.
The combination of two different materials in a single composite core–shell heterostructure can lead to improved or even completely novel properties. In this work we demonstrate the enhancement of the mechanical properties of silver (Ag) nanowires (NW) achieved by coating them with a silica (SiO2) shell. In situ scanning electron microscope (SEM) nanomechanical tests of Ag–SiO2 core–shell nanowires reveal an improved fracture resistance and an electron-beam induced shape restoration effect. In addition, control experiments are conducted separately on uncoated Ag NWs and on empty SiO2 shells in order to gain deeper insight into the peculiar properties of Ag–SiO2. Test conditions are simulate…
Abrupt elastic-to-plastic transition in pentagonal nanowires under bending
MD modeling and calculations were supported by Russian Science Foundation project grant 18-19-00645 “Adhesion of polymer-based soft materials: from liquid to solid”; mechanical testing and FEM simulations were supported by Estonian Research Council projects PUT1689 and PUT1372.
Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: Experimental methods and modeling
Elastic and tribological properties of zinc oxide nanowires (NWs) on Si wafer and highly oriented pyrolytic graphite (HOPG) are experimentally investigated and theoretically interpreted. Measurements are performed inside a scanning electron microscope (SEM) using real-time manipulation technique that enables two possible ways of data registration: “external” force registration with quartz tuning fork (QTF) based sensor and “internal” force registration utilizing in situ observed elastic deformation of NWs. Young modulus is determined by loading half-suspended NW at its free end and then employed for the following tribological experiments. Maximal static friction force is estimated when NW i…
<title>Formation of deep acceptor centers in AlGaN alloys</title>
AlGaN alloy thin film materials are of high interest for light emitting diodes (LED of the ultraviolet (UV) spectral region. Origin of the deep intrinsic and impurity Si states in the AlxGa1-xN (0 < x < 0.35) epilayer structures grown by metalorganic chemical vapor deposition (MOCVD) technique have been considered. Effects of the lattice mismatch and Si-doping in the heterostructures of epilayers with different alloy composition are investigated using time resolved photoluminescence (PL) of donor – deep acceptor (DA) pairs. It is shown that the undoped AlGaN alloys, grown on a GaN buffer layer, due to the lattice mismatch contain the increased concentration of cation vacancy (Vcation) defec…
The effect of substrate roughness on the static friction of CuO nanowires
Abstract The dependence of static friction on surface roughness was measured for copper oxide nanowires on silicon wafers coated with amorphous silicon. The surface roughness of the substrate was varied to different extent by the chemical etching of the substrates. For friction measurements, the nanowires (NWs) were pushed by an atomic-force microscope (AFM) tip at one end of the NW until complete displacement of the NW was achieved. The elastic bending profile of a NW during this manipulation process was used to calculate the ultimate static friction force. A strong dependence of static friction on surface roughness was demonstrated. The real contact area and interfacial shear strength wer…
Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis
In this study, we performed finite element method simulations to investigate the effect of the structure on the elastic response of Ag and Au nanowires (NWs) with a fivefold twinned crystal structure in bending tests. Two different models of a pentagonal NW were created: a 'uniform model' having an isotropic continuous structure and a 'segmented model' consisting of five anisotropic domains. Two asymmetrical mechanical test configurations were simulated: cantilevered beam bending and 3-point bending. The dimensions of the NW, the test configurations, as well as the force and the displacement ranges were based on the previously obtained experimental data. The results of the simulations demon…
Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques
Abstract In this work TiO2 nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties.
Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core–shell nanowires
The proper choice of coating materials and methods in core–shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core–shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating effic…
Growth and characterization of PbI2-decorated ZnO nanowires for photodetection applications
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/1 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. The authors are grateful to Liga Bikse for XRD measurements.
The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire
This research is funded by the Latvian Council of Science project “Epitaxial Ga2O3 thin films as ultrawide bandgap topological transparent electrodes for ultraviolet optoelectronics” No. lzp-2020/1-0345. S.O. was supported by the European Union’s Horizon 2020 program, under Grant Agreement No. 856705 (ERA Chair “MATTER”). Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².
Tribological Aspects of In Situ Manipulation of Nanostructures Inside Scanning Electron Microscope
This chapter is dedicated to manipulation of nanostructures inside a scanning electron (SEM) microscope employed for real-time tribological measurements. Different approaches to force registration and calculation of static and kinetic friction are described. Application of the considered methodology to Au and Ag nanoparticles, as well as ZnO and CuO nanowires, is demonstrated. Advantages and limitations of the methodology in comparison to traditional AFM-based manipulation techniques are discussed.
The Impact of CdS Nanoparticles on Ploidy and DNA Damage of Rucola (Eruca sativa Mill.) Plants
The genotoxic effect of cadmium sulfide nanoparticles (CdS NPs) of different sizes in rucola (Eruca sativaMill.) plants was assessed. It was confirmed that nanoparticles < 5 nm in size were more toxic than larger particles at an identical mass concentration. Significant differences in cell ploidy, as well as in the mitotic index, were detected between control and treated samples. Differences in the DNA banding pattern between control samples and samples after treatment with cadmium sulfide nanoparticles were significant and detected at different places as the appearance or elimination of DNA fragments. Fluorescence images showed that cadmium sulfide nanoparticles smaller than 5 nm in siz…
Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires
The present research was supported by the Latvian National Research Program IMIS2 . Authors are grateful for Dr. Robert Kalendarev and Martins Zubkins for assistance in magnetron sputtering, Dr. Krisjanis Smits for TEM measurements, Dr. Roberts Zabels for AFM measurements and Reinis Ignatans for XRD measurements.
Real-time manipulation of gold nanoparticles inside a scanning electron microscope
Abstract The forces needed to overcome static friction and move 150 nm diameter Au nanoparticles on an oxidized Si substrate were measured in Normal and Shear oscillation modes inside a scanning electron microscope (SEM) in real time. The experimental setup consisted of a quartz tuning fork (QTF) mounted onto a high-precision 3D nanomanipulator used with a glued silicon or tungsten tip as a force sensor. Static friction was found to range from tens of nN to several hundred nN. Large variations in static friction values were related to differences in particle shape. Kinetic friction tended to be close to the detection limit and in most cases did not exceed several nN. The influence of therma…
PATTERNED LASER CRYSTALLIZATION OF a-Si
PATTERNED LASER CRYSTALLIZATION OF a-SiThin films of amorphous Si on glass were crystallized by pulsed nano- and picosecond lasers. Two methods for creating the desired patterns of crystallized regions were used. In the former, the pattern is produced by a focused laser beam, and in the latter it is made using a prefabricated mask. The electric conductivity of crystallized films increases by more than 4 orders of magnitude in comparison with untreated amorphous films.