0000000000033903
AUTHOR
Ismael Moya
Measurement and correction of atmospheric effects in O<inf>2</inf>-B and O<inf>2</inf>-A absorption bands in the context of sun-induced fluorescence remote sensing
Under sun-light illumination, the shape of the atmospheric oxygen bands (O 2 -B, 687 nm and O 2 -A, 760 nm) of the vegetation radiance is modified by chlorophyll fluorescence. However for far-range measurements, atmospheric effects also modify this shape. In this study, measurements in O 2 -A and O 2 -B absorption bands have been performed at different altitudes up to 3123 m over bare soil and wheat fields. It is observed that bands depth increase significantly with altitude. In O 2 -B band, the total magnitude of variation is of the same order of magnitude as the change induced by vegetation fluorescence, while it is much greater in O 2 -A band. We used MODTRAN 4 to correct measurements fr…
Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery
A measurement campaign to assess the feasibility of remote sensing of sunlight-induced chlorophyll fluorescence (ChlF) from a coniferous canopy was conducted in a boreal forest study site (Finland). A Passive Multi-wavelength Fluorescence Detector (PMFD) sensor, developed in the LURE laboratory, was used to obtain simultaneous measurements of ChlF in the oxygen absorption bands, at 687 and 760 nm, and a reflectance index, the PRI (Physiological Reflectance Index), for a month during spring recovery. When these data were compared with active fluorescence measurements performed on needles they revealed the same trend. During sunny days fluorescence and reflectance signals were found to be str…
Surface temperature in the context of FLuorescence EXplorer (FLEX) mission
It has been demonstrated that the spectrum of fluorescence emission is dependent on leaf temperature, thus there is a need for thermal information in order to interpret fluorescence signals. Temperature is also related to transpiration and stomata closure, which affects CO2 uptake and fluorescence. Therefore temperature measurements help to confirm the trends observed in fluorescence measurements. While fluorescence is immediately and uniquely related to photosynthesis, temperature provides additional information about plant status and instantaneous energy/water fluxes between plants and the atmosphere. The objective of this paper is to demonstrate the role of surface temperature in the con…
Fluorescence explorer (FLEX): An optimised payload to map vegetation photosynthesis from space
The FLuorescence EXplorer (FLEX) mission proposes to launch a satellite for the global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. Fluorescence is a sensitive probe of photosynthetic function in both healthy and physiologically perturbed vegetation, and a powerful non-invasive tool to track the status, resilience, and recovery of photochemical processes and moreover provides important information on overall photosynthetic performance with implications for related carbon sequestration. The early responsiveness of fluorescence to atmospheric, soil and plant water balance, as well as to atmospheric chemistry and human intervention in land usage makes it an ob…
Fluorescence estimation in the framework of the CEFLES2 campaign
International audience; Chlorophyll fluorescence (ChF) is a relevant indicator of the actual plant physiological status. In this article different methods to measure ChF from remote sensing are evaluated: The Fraunhofer Line Discrimination (FLD), theFluorescence Radiative Method (FRM) and the improved Fraunhofer Line Discrimination (iFLD). The three methods have been applied to data acquired in the framework of the CarboEurope, FLEX and Sentinel-2 (CEFLES2) campaign in Les Landes, France in September 2007. Comparing with in situ measurements, the results indicate that the methods that provide the best results are the FLD and the iFLD with root mean square errors (RMSEs) of 0.4 and 0.5 mW m-…
Chlorophyll fluorescence emission spectrum inside a leaf
International audience; Chlorophyll a fluorescence can be used as an early stress indicator. Fluorescence is also connected to photosynthesis so it can be proposed for global monitoring of vegetation status from a satellite platform. Nevertheless, the correct interpretation of fluorescence requires accurate physical models. The spectral shape of the leaf fluorescence free of any re-absorption effect plays a key role in the models and is difficult to measure. We present a vegetation fluorescence emission spectrum free of re-absorption based on a combination of measurements and modelling. The suggested spectrum takes into account the photosystem I and II spectra and their relative contributio…
CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands
The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO<sub>2</sub> fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype ai…
Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …