0000000000033916

AUTHOR

W. Schnauss

Localized Motion in Supercooled Glycerol as Measured by 2 H-NMR Spin-Lattice Relaxation and Incoherent Neutron Scattering

Selectively deuterated glycerol has been subjected to 2H-NMR spin-lattice relaxation and quasi-elastic neutron scattering experiments. The measurements yield relaxation rates and a non-Gaussian Q-dependence of the Debye-Waller factor which are different for the two hydrogen sites. The data analysis shows that below the onset of the glass transition α-process the hydrogens perform a local motion (≈ 10-12 s) in addition to what is expected from harmonic phonons. The resulting mean-square displacements are highly temperature dependent but are significantly smaller than those found in van der Waals glasses. Amplitudes and activation energies of the carbon-bonded and oxygen-bonded hydrogens are …

research product

Nonexponential 2H spin-lattice relaxation as a signature of the glassy state

Abstract High-precision measurements of 2H spin-lattice relaxation on several molecular glass-forming liquids have been performed. As a general feature the following can be stated: At temperatures more than ten to twenty degrees above the calorimetric glass transition temperature Tg the 2H spin-lattice relaxation is exponential; below that temperature regime the relaxation is nonexponential. This crossover from exponential to nonexponential magnetization recovery implies that no common spin temperature caused by spin diffusion exists in a 2H glass. This contrasts 1H spin-lattice relaxation which is found to be strictly monoexponential throughout. The occurrence of nonexponential 2H relaxati…

research product