0000000000034438

AUTHOR

L. Velazquez-ibarra

showing 12 related works from this author

Tuning four-wave mixing through temperature in ethanol-filled photonic crystal fiber

2016

In this paper, continuous tuning of four-wave mixing bands in an ethanol-filled photonic crystal fiber is investigated. A wide tuning range of the parametric bands, from 745 nm to 920 nm (signal) and from 1260 nm to 1710 nm (idler), is achieved through the thermo-optic effect. This corresponds to a frequency tuning range higher than 2000 cm−1; such wide range can be particularly useful in applications that require broadband wavelength conversion, e.g., CARS microscopy. Numerical calculations are in good agreement with experimental measurements.

Materials sciencebusiness.industry02 engineering and technologyMicrostructured optical fiber021001 nanoscience & nanotechnology01 natural sciencesSignal010309 opticsFour-wave mixingOpticsZero-dispersion wavelength0103 physical sciencesMicroscopyOptoelectronicsDispersion-shifted fiber0210 nano-technologybusinessPhotonic crystalPhotonic-crystal fiber2016 18th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Control of the chromatic dispersion of photonic crystal fibers for supercontinuum and photon pairs generation

2011

The interplay between chromatic dispersion and nonlinear effects is crucial for an efficient exploitation of non linear propagation in photonic crystal fibers (PCF). Once a PCF preform has been prepared, changing the parameters that control the fabrication process it is possible to adjust the dispersion properties of the fiber. In addition, it is particularly useful to develop postprocessing techniques that enable a fine adjustment of the dispersion along a section of PCF. The tapering of PCF, using a fusion and pulling technique, has been established as a rather useful technique to engineer the dispersion properties along tens of centimeters. Some of our recent experiments demonstrate that…

Materials sciencebusiness.industrySingle-mode optical fiberPhysics::OpticsSupercontinuumOpticsZero-dispersion wavelengthDispersion (optics)OptoelectronicsModal dispersionDispersion-shifted fiberbusinessPhotonic crystalPhotonic-crystal fiber2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM)
researchProduct

Polarization Modulation Instability in All-Normal Dispersion Microstructured Optical Fibers with Quasi-Continuous 1064 nm Pump

2019

Polarization modulation instability (PMI) is a form of modulation instability that can exist in weakly birefringent optical fibers [1]. Sidebands can be generated by this effect when a polarization mode of the birefringent fiber is excited with an intense optical pump. The polarization state of the sidebands is orthogonal to the polarization of the pump signal. PMI has been observed in microstructured optical fibers (MOFs). PMI was reported in a large-air-filling fraction MOF that was pumped in the normal dispersion regime with visible light [2]. The coherent degradation of femtosecond supercontinuum light generated in all-normal dispersion (ANDi) MOFs due to PMI was recently investigated […

BirefringenceOptical fiberMaterials sciencebusiness.industryComputer Science::Information RetrievalPhysics::OpticsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Polarization (waves)Supercontinuumlaw.inventionOptical pumpinglawPicosecondExcited stateFemtosecondOptoelectronicsbusiness2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Four Wave Mixing in Photonic Crystal Fibers:<br /> Tuning Techniques

2016

We present an experimental and numerical study of four-wave mixing in photonic crystal fibers. Our objective is the development of tuning techniques based on tailoring de dispersion of the fibers. We demonstrate wide tuning ranges.

Materials sciencebusiness.industryScanning electron microscopePhysics::Opticssymbols.namesakeFour-wave mixingOpticsDispersion (optics)symbolsOptoelectronicsbusinessRaman scatteringMixing (physics)Photonic-crystal fiberPhotonic crystalLatin America Optics and Photonics Conference
researchProduct

Effects of refractive index changes on four-wave mixing bands in Er-doped photonic crystal fibers pumped at 976 nm.

2012

An experimental study of the effects of an auxiliary 976 nm pump signal on the four-wave mixing parametric bands generated with a 1064 nm pump in a normal dispersion Er-doped photonic crystal fiber is presented. The four-wave mixing signal and idler bands shift to shorter and longer wavelengths, respectively, with increasing 976 nm pump power. It is shown that the wavelength-dependent resonant refractive index change in the erbium-doped core under 976 nm pumping is at the origin of the effect.

Optical fiberMaterials sciencebusiness.industryPhysics::OpticsAtomic and Molecular Physics and Opticslaw.inventionCore (optical fiber)WavelengthFour-wave mixingOpticslawDispersion (optics)OptoelectronicsbusinessRefractive indexPhotonic-crystal fiberPhotonic crystalOptics letters
researchProduct

Polarization Modulation Instability in All-Normal Dispersion Microstructured Optical Fibers with sub-ns Pumping

2019

The advent of microstructured optical fiber (MOF) technology gave a significant boost to research in nonlinear optics. MOFs have the advantage of high nonlinearity and designable dispersion, which makes this type of fiber an excellent platform for efficient generation of nonlinear effects. In the last years, MOFs exhibiting normal dispersion at any guiding wavelength (ANDi fibers) aroused the interest because of the possibility of using them for the generation of coherent and recompressible supercontinuum (SC) light. In this contribution, we present our recent results regarding the generation of the polarization modulation instability (PMI) effect in ANDi MOFs in the quasi-CW pump regime at…

Optical fiberMaterials sciencebusiness.industryNonlinear opticsMicrostructured optical fiberSupercontinuumlaw.inventionWavelengthlawModulationDispersion (optics)OptoelectronicsFiberbusiness2019 21st International Conference on Transparent Optical Networks (ICTON)
researchProduct

Modeling spectral correlations of photon-pairs generated in liquid-filled photonic crystal fiber

2020

The generation of photon-pairs with controllable spectral correlations is crucial in quantum photonics. Here we present the design of a photonic crystal fiber to generate widely-spaced four-wave mixing bands with spectral correlations that can be tuned through the thermo-optic effect after being infiltrated with heavy water. We present a theoretical study of the purity of the signal (idler) photon generated as a function of temperature, pump spectral linewidth and the length of the fiber. 511-6/18-8876 CIIC155/2019 APN-624 TEC2016- 76664-C2-1-R PROMETEO/2019/048

PhotonMaterials sciencephoton sourcesbusiness.industryUNESCO::FÍSICANonlinear opticsPhysics::OpticsSignalAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsnon-linear opticsspectral correlationsLaser linewidthOptics:FÍSICA [UNESCO]OptoelectronicsFibermicrostructured optical fibersPhotonicsbusinessQuantumPhotonic-crystal fiber
researchProduct

Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers

2016

We present an experimental study of parametric four-wave mixing generation in photonic crystal fibers that have been infiltrated with ethanol. A silica photonic crystal fiber was designed to have the proper dispersion properties after ethanol infiltration for the generation of widely spaced four-wave mixing (FWM) bands under 1064 nm pumping. We demonstrate that the FWM bands can be tuned in a wide wavelength range through the thermo-optic effect. Band shifts of 175 and over 500 nm for the signal and idler bands, respectively, are reported. The reported results can be of interest in many applications, such as CARS microscopy.

Materials sciencebusiness.industryScanning electron microscopePhysics::Optics02 engineering and technologyÒptica01 natural sciencesSignalAtomic and Molecular Physics and Optics010309 opticsFour-wave mixing020210 optoelectronics & photonicsOptics0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringWidebandbusinessMixing (physics)Photonic-crystal fiberPhotonic crystal
researchProduct

Wavelength shift of four-wave mixing bands in photonic crystal fibers pumped in the normal dispersion regime

2011

The generation of correlated photon pairs plays a central role in several quantum mechanics applications, such as quantum information, and cryptography [1]. Correlated photon pairs can be generated inside an optical fiber through the parametric process of degenerated four-wave mixing (FWM) [2]. In this paper we report the results of two different experiments where wavelength shift of FWM bands in normal dispersive PCFs is investigated.

PhysicsPhotonOptical fiberbusiness.industryPhysics::OpticsMolecular physicslaw.inventionFour-wave mixingOpticsParametric processlawDispersion (optics)Quantum informationbusinessPhotonic crystalPhotonic-crystal fiber2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
researchProduct

Broadband Tuning of Four-Wave Mixing Bands Using Photonic Crystal Fibers

2016

We present an experimental study of the shift with temperature of widely-spaced FWM parametric bands generated in an ethanol-inflltrated photonic crystal fiber. We report broadband tuning of 175 nm and over 500 nm for the signal and idler bands, respectively, achieved through the thermo-optic effect. Numerical calculations were carried out and show good agreement with experimental data.

Materials sciencebusiness.industryPhysics::OpticsNonlinear optics01 natural sciencesSignal010309 opticsFour-wave mixingOptics0103 physical sciencesBroadbandOptoelectronics010306 general physicsbusinessPhotonic-crystal fiberPhotonic crystalParametric statistics
researchProduct

Polarization Modulation Instability in All-Normal Dispersion Microstructured Optical Fibers With Quasi-Continuous Pump

2019

We report the experimental observation of the polarization modulation instability (PMI) effect in all-normal dispersion (ANDi) microstructured optical fibers (MOFs) with quasi-continuous pumping. The small unintentional birefringence (~10-5), that any realistic non-polarization maintaining MOF exhibits, contributes to this nonlinear effect. PMI can produce two sidebands whose polarization state is orthogonal to the polarization of the pump. In this work, only one type of PMI process is observed, i.e., when the pump is polarized along the slow axis of the fiber and sidebands are generated in the fast axis mode. This PMI process was studied experimentally in two ANDi fibers with different dis…

Microstructured optical fiberslcsh:Applied optics. PhotonicsWork (thermodynamics)Optical fiberMaterials sciencePhysics::Optics02 engineering and technology01 natural sciencesInstabilitylaw.invention010309 opticsOpticslawFiber nonlinear optics0103 physical sciencesDispersion (optics)Four-wave mixinglcsh:QC350-467FiberElectrical and Electronic EngineeringBirefringencebusiness.industrylcsh:TA1501-1820021001 nanoscience & nanotechnologyPolarization (waves)Atomic and Molecular Physics and OpticsOptical polarizationNonlinear system0210 nano-technologybusinesslcsh:Optics. LightChromatic dispersionIEEE Photonics Journal
researchProduct

Tunable Four-wave Mixing Light Source Based on Photonic Crystal Fibers with Variable Chromatic Dispersion

2019

We present a detailed experimental study of fourwave mixing tuning in photonic crystal fibers that were filled either with ethanol or with heavy water. It is demonstrated that wide tuning ranges can be achieved in both cases through the variable chromatic dispersion generated by thermo-optic effect. Tunability of the signal band from 745 nm to 919 nm, and of the idler band from 1260 nm to 1759 nm is demonstrated with a pump at 1064 nm. Numerical calculations were carried out and show good agreement with experimental measurements. We present a detailed experimental study of fourwave mixing tuning in photonic crystal fibers that were filled either with ethanol or with heavy water. It is demon…

Materials scienceOptical fiberbusiness.industryphotonic crystal fibersnonlinear opticsUNESCO::FÍSICANonlinear opticsPhysics::Opticsnonlinear microscopyAtomic and Molecular Physics and Opticslaw.inventionsymbols.namesakeFour-wave mixinglaw:FÍSICA [UNESCO]symbolsOptoelectronicsfour-wave mixingbusinessRefractive indexRaman scatteringMixing (physics)Photonic-crystal fiberVariable (mathematics)
researchProduct