0000000000034561
AUTHOR
P. Benedini Riul
The geometry of corank 1 surfaces in ℝ4
Abstract We study the geometry of surfaces in ℝ4 with corank 1 singularities. For such surfaces, the singularities are isolated and, at each point, we define the curvature parabola in the normal space. This curve codifies all the second-order information of the surface. Also, using this curve, we define asymptotic and binormal directions, the umbilic curvature and study the flat geometry of the surface. It is shown that we can associate to this singular surface a regular one in ℝ4 and relate their geometry.
A relation between the curvature ellipse and the curvature parabola
Abstract At each point in an immersed surface in ℝ4 there is a curvature ellipse in the normal plane which codifies all the local second order geometry of the surface. Recently, at the singular point of a corank 1 singular surface in ℝ3, a curvature parabola in the normal plane which codifies all the local second order geometry has been defined. When projecting a regular surface in ℝ4 to ℝ3 in a tangent direction, corank 1 singularities appear generically. The projection has a cross-cap singularity unless the direction of projection is asymptotic, where more degenerate singularities can appear. In this paper we relate the geometry of an immersed surface in ℝ4 at a certain point to the geome…