0000000000036992

AUTHOR

Sascha Brune

0000-0003-4985-1810

Modeling suggests that oblique extension facilitates rifting and continental break-up

[1] In many cases the initial stage of continental break-up was and is associated with oblique rifting. That includes break-up in the Southern and Equatorial Atlantic, separation from eastern and western Gondwana as well as many recent rift systems, like Gulf of California, Ethiopia Rift and Dead Sea fault. Using a simple analytic mechanical model and advanced numerical, thermomechanical modeling techniques we investigate the influence of oblique extension on the required tectonic force in a three-dimensional setting. While magmatic processes have been already suggested to affect rift evolution, we show that additional mechanisms emerge due to the three-dimensionality of an extensional syst…

research product

Quantifying the thermo-mechanical impact of plume arrival on continental break-up

Abstract The arrival of a plume head at Earth's continental lithosphere is often considered to be an important factor for continental break-up. However, the impact of plume impingement on strength and duration of a rift remains unclear. In this study, we quantify the mechanical and thermal influence of a plume (i.e. lithosphere erosion) on continental break-up. To do that we apply the three-dimensional numerical code SLIM3D that features realistic elasto-visco-plastic rheology. We model the thermo-mechanical response of a segment of Earth's lithosphere that is affected both by extension as well as plume-related lithosphere erosion in order to evaluate the influence on the overall force budg…

research product