0000000000037779

AUTHOR

Thorsten Pflanzner

Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration.

The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model…

research product

LRP1 mediates bidirectional transcytosis of amyloid-β across the blood-brain barrier.

According to the "amyloid hypothesis", the amyloid-β (Aβ) peptide is the toxic intermediate driving Alzheimer's disease (AD) pathogenesis. Recent evidence suggests that the low density lipoprotein receptor-related protein 1 (LRP1) transcytoses Aβ out of the brain across the blood-brain barrier (BBB). To provide genetic evidence for LRP1-mediated transcytosis of Aβ across the BBB we analyzed Aβ transcytosis across primary mouse brain capillary endothelial cells (pMBCECs) derived from wild-type and LRP1 knock-in mice. Here, we show that pMBCECs in vitro express functionally active LRP1. Moreover, we demonstrate that LRP1 mediates transcytosis of [(125)I]-Aβ(1-40) across pMBCECs in both direct…

research product

Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation

The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study…

research product

Mechanisms of C-reactive protein-induced blood-brain barrier disruption.

Background and Purpose— Increased mortality after stroke is associated with brain edema formation and high plasma levels of the acute phase reactant C-reactive protein (CRP). The aim of this study was to examine whether CRP directly affects blood–brain barrier stability and to analyze the underlying signaling pathways. Methods— We used a cell coculture model of the blood–brain barrier and the guinea pig isolated whole brain preparation. Results— We could show that CRP at clinically relevant concentrations (10 to 20 μg/mL) causes a disruption of the blood–brain barrier in both approaches. The results of our study further demonstrate CRP-induced activation of surface Fcγ receptors CD16/32 fo…

research product

Cellular Prion Protein Participates in Amyloid-β Transcytosis across the Blood—Brain Barrier

The blood—brain barrier (BBB) facilitates amyloid-β (Aβ) exchange between the blood and the brain. Here, we found that the cellular prion protein (PrPc), a putative receptor implicated in mediating Aβ neurotoxicity in Alzheimer's disease (AD), participates in Aβ transcytosis across the BBB. Using an in vitro BBB model, [125I]-Aβ1–40 transcytosis was reduced by genetic knockout of PrPc or after addition of a competing PrPc-specific antibody. Furthermore, we provide evidence that PrPc is expressed in endothelial cells and, that monomeric Aβ1–40 binds to PrPc. These observations provide new mechanistic insights into the role of PrPc in AD.

research product

Blood-Brain-Barrier Models for the Investigation of Transporter- and Receptor-Mediated Amyloid-β Clearance in Alzheimers Disease

Alzheimer's disease (AD) is the most common form of dementia in the elderly with more than 26 million people worldwide living with the disease. Besides the main neuropathological hallmarks of AD, provoked by the accumulation of amyloid-β (Aβ) and tau hyperphosphorylation, other cells and cellular systems such as microglia and the neurovascular unit establishing the blood-brain-barrier (BBB) have been implicated to play a role in AD etiopathology. Insulating the brain from the blood stream, the BBB facilitates supply and disposal of nutrients and metabolites by the expression of transporters and transcytotic receptors at the polarized endothelial cell (EC) surface. Recently, several proteins…

research product