0000000000037781
AUTHOR
Massimo Libra
Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines
Neutrophil gelatinase-associated lipocalin (NGAL a.k.a lipocalin 2, lnc2) is a secreted protein which can form a complex with matrix metalloproteinase-9 (MMP9). This MMP9/NGAL complex has been associated with metastasis. MMP9 and NGAL are detected in the urine of patients afflicted with many different types of cancer, including prostate cancer. The effects of p53, NF-κB and the androgen receptor (AR) on the expression of NGAL was examined in four prostate cancer cell lines. Prostate cancer cell lines that are AR negative and expressed either mutant or no p53 (DU145 and PC3) displayed higher levels of NGAL expression compared to the prostate cancer cell lines (LNCaP and 22Rv-1) which are AR …
Advances in Targeting Signal Transduction Pathways
// James A. McCubrey 1 , Linda S. Steelman 1 , William H. Chappell 1 , Lin Sun 1,2 , Nicole M. Davis 1 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Lucio Cocco 3 , Camilla Evangelisti 4 , Francesca Chiarini 4 , Alberto M. Martelli 3,4 , Massimo Libra 5 , Saverio Candido 5 , Giovanni Ligresti 5 , Grazia Malaponte 5 , Maria C. Mazzarino 5 , Paolo Fagone 5 , Marco Donia 5 , Ferdinando Nicoletti 5 , Jerry Polesel 6 , Renato Talamini 6 , Jorg Basecke 7 , Sanja Mijatovic 8 , Danijela Maksimovic-Ivanic 8 , Michele Milella 9 , Agostino Tafuri 10 , Joanna Dulinska-Litewka 11 , Piotr Laidler 11 , Antonio B. D’Assoro 12 , Lyudmyla Drobot 13 , Kazuo Umezawa 14 , Giuseppe Montalto 15 , Melchiorre Cer…
Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases.
Natural products or nutraceuticals promote anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. This review will focus on the effects of curcumin (CUR), berberine (BBR) and resveratrol (RES), on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway, with a special focus on GSK-3. These natural products may regulate the pathway by multiple mechanisms including: reactive oxygen species (ROS), cytokine receptors, mirco-RNAs (miRs) and many others. CUR is present the root of turmeric (Curcuma longa). CUR is used in the treatment of many disorders, especially in those involving inflammatory p…
Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response.
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cas…
Emerging Raf inhibitors
The Raf/MAPK kinase/extracellular-signal-regulated kinase pathway is often activated by genetic alterations in upstream signaling molecules. An integral component of this pathway, BRAF, is also activated by mutation, especially in melanoma and thyroid cancers. The Raf/MAPK kinase/extracellular-signal-regulated kinase pathway has profound effects on proliferative, apoptotic and differentiation pathways as well as the sensitivity and resistance to chemotherapeutic drugs.This review discusses targeting of Raf which could control abnormal proliferation in cancer and other proliferative diseases. The important roles that genetics plays in the response of patients to Raf inhibitors is also evalua…
Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals.
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These âhealthyâ components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/po…
Effects of ectopic expression of NGAL on doxorubicin sensitivity.
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family which has diverse roles including stabilizing matrix metalloproteinase-9 from auto-degradation and as siderocalins which are important in the transport of iron. NGAL also has important biological functions involved in immunity and inflammation as well as responses to kidney damage. NGAL expression has also been associated with certain neoplasia and is important in the metastasis of breast cancer. Many advanced cancer patients have elevated levels of NGAL in their urine and it has been proposed that NGAL may be a prognostic indicator for certain cancers (e.g. breast, brain, and others). NGAL exp…
Dietary inflammatory index and cancer risk in the elderly: A pooled-analysis of Italian case-control studies
Abstract Objectives The aim of this study was to evaluate whether the association between the inflammatory potential of one's diet and cancer risk varies across age groups in a population characterized by widespread use of the Mediterranean diet. Methods We analyzed data from a network of case-control studies conducted in Italy between 1991 and 2014. The studies included cancers of the oral cavity (n = 509), pharynx (n = 436), nasopharynx (n = 198), larynx (n = 459), esophagus (n = 304), stomach (n = 230), colon (n = 1225), rectum (n = 728), liver (n = 184), pancreas (n = 326), breast (n = 2569), endometrium (n = 454), ovary (n = 1031), prostate (n = 1294), kidney (n = 767), and bladder (n …
NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance
AbstractSorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 signi…
Bovine seminal ribonuclease is cytotoxic for both malignant and normal telomerase-positive cells
Bovine seminal-ribonuclease (BS-RNase) is a member of the 'ribonucleases with special biological actions' family since it possesses specific anti-tumour, anti-spermatogenic and embryotoxic activities and exerts an immunosuppressive effect on T lymphocytes. In previous studies it was demonstrated that BS-RNase induced apoptosis in proliferating, malignant and normal cells and that telomerase activity loss also caused apoptotic death in neoplastic cells. Since an obvious relationship between cell proliferation and telomerase activity exists, the aim of this work was to study if the pro-apoptotic cytotoxic action exerted by BS-RNase on proliferating malignant cells (HT29) and proliferating nor…
Polyphenol-rich and alcoholic beverages and metabolic status in adults living in Sicily, Southern Italy
Polyphenol-rich beverage consumption is not univocally accepted as a risk modulator for cardio-metabolic risk factors, despite mechanistic and epidemiological evidence suggesting otherwise. The aim of this study was to assess whether an association between polyphenol-rich beverage consumption and metabolic status could be observed in a Mediterranean cohort with relatively low intake of tea, coffee, red and white wine, beer, and fresh citrus juice. Demographic and dietary characteristics of 2044 adults living in southern Italy were analyzed. Multivariate logistic regression analyses were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of the association between polyphe…
Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways.
Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for ther…
Targeting GSK3 and Associated Signaling Pathways Involved in Cancer
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer a…
Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy.
Various, diverse molecules contribute to the tumor microenvironment and influence invasion and metastasis. In this review, the roles of neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) in the tumor microenvironment and sensitivity to therapy will be discussed. The lipocalin family of proteins has many important functions. For example when NGAL forms a complex with MMP-9 it increases its stability which is important in cancer metastasis. Small hydrophobic molecules are bound by NGAL which can alter their entry into and efflux from cells. Iron transport and storage are also influenced by NGAL activity. Regulation of iron levels is important for survival…
Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells.
// James A. McCubrey 1 , Timothy L. Fitzgerald 2 , Li V. Yang 3 , Kvin Lertpiriyapong 4 , Linda S. Steelman 1 , Stephen L. Abrams 1 , Giuseppe Montalto 5,6 , Melchiorre Cervello 6 , Luca M. Neri 7 , Lucio Cocco 8 , Alberto M. Martelli 8 , Piotr Laidler 9 , Joanna Dulinska-Litewka 9 , Dariusz Rakus 10 , Agnieszka Gizak 10 , Ferdinando Nicoletti 11 , Luca Falzone 11 , Saverio Candido 11 and Massimo Libra 11 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA 2 Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA 3 Department of Internal Medicine, Hematology/Oncology Section, Brody Sc…
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health
William H. Chappell 1 , Linda S. Steelman 1,2 , Jacquelyn M. Long 2 , Ruth C. Kempf 2 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Jorg Basecke 3 , Franca Stivala 4 , Marco Donia 4 , Paolo Fagone 4 , Graziella Malaponte 4 , Maria C. Mazzarino 4 , Ferdinando Nicoletti 4 , Massimo Libra 4 , Danijela Maksimovic-Ivanic 5 , Sanja Mijatovic 5 , Giuseppe Montalto 6 , Melchiorre Cervello 7 , Piotr Laidler 8 , Michele Milella 9 , Agostino Tafuri 10 , Antonio Bonati 11 , Camilla Evangelisti 12 , Lucio Cocco 12 , Alberto M. Martelli 12,13 , and James A. McCubrey 1 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University 2 Department of Physics, Greenville, N…
Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals
Abstract Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5–10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisp…
Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals
Abstract Mutations at the TP53 gene are readily detected (approximately 50–75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor incre…
GSK-3 as potential target for therapeutic intervention in cancer
// James A. McCubrey 1 , Linda S. Steelman 1 , Fred E. Bertrand 2 , Nicole M. Davis 1 , Melissa Sokolosky 1 , Steve L. Abrams 1 , Giuseppe Montalto 3 , Antonino B. D’Assoro 4 , Massimo Libra 5 , Ferdinando Nicoletti 5 , Roberta Maestro 6 , Jorg Basecke 7,8 , Dariusz Rakus 9 , Agnieszka Gizak 9 Zoya Demidenko 10 , Lucio Cocco 11 , Alberto M. Martelli 11 and Melchiorre Cervello 12 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC, USA 2 Department of Oncology, Brody School of Medicine at East Carolina University Greenville, NC, USA 3 Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy …
GSK-3? Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals
Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3β in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3β. Transfection of MIA-PaCa-2 cells with WT-GSK-3β increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3β often increased therapeutic sensitivity. An exception was observed wi…
Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mtor pathways in controlling growth and sensitivity to therapy-implications for cancer and aging
Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described …
Targeting breast cancer initiating cells: advances in breast cancer research and therapy
Over the past 10 years there have been significant advances in our understanding of breast cancer and the important roles that breast cancer initiating cells (CICs) play in the development and resistance of breast cancer. Breast CICs endowed with self-renewing and tumor-initiating capacities are believed to be responsible for the relapses which often occur after various breast cancer therapies. In this review, we will summarize some of the key developments in breast CICs which will include discussion of some of the key genes implicated: estrogen receptor (. ER), HER2, BRCA1, TP53, PIK3CA, RB, P16INK1 and various miRs as well some drugs which are showing promise in targeting CICs. In additio…
Targeting the Cancer Initiating Cell: The Ultimate Target for Cancer Therapy
An area of therapeutic interest in cancer biology and treatment is targeting the cancer stem cell, more appropriately referred to as the cancer initiating cell (CIC). CICs comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts in genetically modified murine models. CICs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation and metastasis. CICs may lay dormant after various cancer therapies which eliminate the more rapidly proliferating bulk cancer (BC) mass. However, CICs may remerge after therapy is discontinued as they may represent cells which were either intrinsically resistant to the or…
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: How mutations can result in therapy resistance and how to overcome resistance
// James A. McCubrey 1 , Linda S. Steelman 1 , William H. Chappell 1 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Giuseppe Montalto 2 , Melchiorre Cervello 3 , Massimo Libra 4 , Saverio Candido 4 , Grazia Malaponte 4 , Maria C. Mazzarino 4 , Paolo Fagone 4 , Ferdinando Nicoletti 4 , Jorg Basecke 5 , Sanja Mijatovic 6 , Danijela Maksimovic-Ivanic 6 , Michele Milella 7 , Agostino Tafuri 8 , Francesca Chiarini 9 , Camilla Evangelisti 9 , Lucio Cocco 10 , Alberto M. Martelli 9,10 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA 2 Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy 3 Consi…
Emerging MEK inhibitors
IMPORTANCE OF THE FIELD: The Ras/Raf/MEK/ERK pathway is often activated by genetic alterations in upstream signaling molecules. Integral components of this pathway such as Ras and B-Raf are also activated by mutation. The Ras/Raf/MEK/ERK pathway has profound effects on proliferative, apoptotic and differentiation pathways. This pathway can often be effectively silenced by MEK inhibitors. AREAS COVERED BY THIS REVIEW: This review will discuss targeting of MEK which could lead to novel methods to control abnormal proliferation which arises in cancer and other proliferative diseases. This review will cover the scientific literature from 1980 to present and is a follow on from a review which fo…
Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells.
Abstract Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other…
Cancer therapy and treatments during COVID-19 era
The COVID-19 pandemic has put a serious strain on health treatments as well at the economies of many nations. Unfortunately, there is not currently available vaccine for SARS-Cov-2/COVID-19. Various types of patients have delayed treatment or even routine check-ups and we are adapting to a virtual world. In many cases, surgeries are delayed unless they are essential. This is also true with regards to cancer treatments and screening. Interestingly, some existing drugs and nutraceuticals have been screened for their effects on COVID-19. Certain FDA approved drugs, vitamin, natural products and trace minerals may be repurposed to treat or improve the prevention of COVID-19 infections and disea…
Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) d…
Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple sign…
New agents and approaches for targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cell survival pathways.
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have…
Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells.
Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated w…
Six novel mutations of the LDL receptor gene in FH kindred of Sicilian and Paraguayan descent
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease caused by mutations in the gene coding for the low density lipoprotein receptor (LDL-R). It is characterized by a high concentration of low density lipoprotein (LDL), which frequently gives rise to premature coronary artery disease. We studied the probands of five FH Sicilian families with 'definite' FH and one proband of Paraguayan descent with homozygous FH who has been treated with an effective living-donor liver transplantation. In order to seek the molecular defect in these six families, we used direct sequencing to define the molecular defects of the LDL-R gene responsible for the disease. We described three…
Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, t…
Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis
The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathw…
Ageing: from inflammation to cancer.
Abstract Ageing is the major risk factor for cancer development. Hallmark of the ageing process is represented by inflammaging, which is a chronic and systemic low-grade inflammatory process. Inflammation is also a hallmark of cancer and is widely recognized to influence all cancer stages from cell transformation to metastasis. Therefore, inflammaging may represent the biological phenomena able to couple ageing process with cancer development. Here we review the molecular and cellular pathway involved in age-related chronic inflammation along with its potential triggers and their connection with cancer development.
Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy. Approximately 85% of pancreatic cancers are classified as PDACs. The survival of PDAC patients is very poor and only 5–10% of patients survive 5 years after diagnosis. Mutations at the KRAS and TP53 gene are frequently observed in PDAC patients. The PANC-28 cell line lacks wild-type (WT) TP53. In the following study, we have investigated the effects of restoration of WT TP53 activity on the sensitivity of PANC-28 pancreatic cancer cells to various drugs which are used to treat PDAC patients as well as other cancer patients. In addition, we have examined the effects of signal transduction inhibitors which tar…
Gene expression in mouse spermatogenesis during ontogenesis
In this study, we evaluated the expression of genes probably involved in spermatogenesis in the mouse. We examined cytosolic chaperonin theta subunit (CCTtheta), Ngg1 interacting factor 3 like 1 binding protein 1 (NIF3L1 BP1) and apolipoprotein H (ApoH) expression during mouse onto-geny using RT-PCR. Testicular tissue was obtained from mice 3, 6, 8, 10, 12, 14, 18, 20 and 40 (adult) days after birth. For each mouse, one testis was used for histological examination, whereas RNA was extracted from the controlateral testis for expression analysis. RT-PCR analysis showed that CCTtheta gene expression was low until day 10, but increased drastically afterwards. At this age, spermatocytes started …
Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells.
Improving the effects of chemotherapy and reducing the side effects are important goals in cancer research. Various approaches have been examined to enhance the effectiveness of chemotherapy. For example, signal transduction inhibitors or hormonal based approaches have been included with chemo- or radio-therapy. MIA-PaCa-2 and BxPC-3 pancreatic ductal adenocarcinoma (PDAC) cells both express the estrogen receptor (ER). The effects of β-estradiol on the growth of PDAC cells has not been examined yet the ER is expressed in PDAC cells. We have examined the effects of combining β-estradiol with chemotherapeutic drugs, signal transcription inhibitors, natural products and nutraceuticals on PDAC.…
Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines
Background TP53 plays critical roles in sensitivity to chemotherapy, and aging. Collagen is very important in aging. The molecular structure and biochemical properties of collagen changes during aging. The discoidin domain receptor (DDR1) is regulated in part by collagen. Elucidating the links between TP53 and DDR1 in chemosensitivity and aging could improve therapies against cancer and aging. Results Restoration of WT-TP53 activity resulted in increased sensitivity to chemotherapeutic drugs and elevated expression of key components of the Raf/MEK/ERK, PI3K/Akt and DDR1 pathways. DDR1 could modulate the levels of Raf/MEK/ERK and PI3K/Akt pathways as well as sensitize the cells to chemothera…
Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53
Abstract Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). A key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, cancer progression and other growth regulatory processes. The mouse double minute 2 homolog (MDM2) gene product is a nuclear-localized E3 ubiquitin ligase and negatively regulates the TP53 protein which results in its proteasomal degradation. Various MDM2 inhibitors have been isolated and examined in clinical t…
Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling
The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorub…
Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the tutreatment of many disorders, …
Multifaceted roles of GSK-3 and Wnt/beta-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with mul…
Integrated analysis of colorectal cancer microRNA datasets: Identification of microRNAs associated with tumor development
Colorectal cancer (CRC) is one of the leading cause of cancer death worldwide. Currently, no effective early diagnostic biomarkers are available for colorectal carcinoma. Therefore, there is a need to discover new molecules able to identify pre-cancerous lesions. Recently, microRNAs (miRNAs) have been associated with the onset of specific pathologies, thus the identification of miRNAs associated to colorectal cancer may be used to detect this pathology at early stages. On these bases, the expression levels of miRNAs were analyzed to compare the miRNAs expression levels of colorectal cancer samples and normal tissues in several miRNA datasets. This analysis revealed a group of 19 differentia…
Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy.
Glycogen synthase kinase-3 (GSK-3) is a critical enzyme which participates in a complex array of important cellular processes and is often involved in various human diseases. It was first characterized in rat skeletal muscle as a serine/threonine (S/T) kinase that phosphorylated and inactivated glycogen synthase (GS). GS is the last enzyme in glycogen biosynthesis . Thus the initially identified role of GSK-3 was in metabolism. However, as we will soon see, GSK-3 has many diverse functions.
Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis.
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53…
Total Nut, Tree Nut, and Peanut Consumption and Metabolic Status in Southern Italian Adults.
Background: Nut consumption has been associated with cardio-metabolic health benefits. However, studies conducted in the Southern Italian population, where adherence to the Mediterranean diet has been reported being relatively high, are rather scarce. The aim of this study was to test the association between consumption of total and specific types of nuts and metabolic status among adults living in Sicily, Southern Italy. Methods: Demographic and dietary characteristics of 2044 adults living in Southern Italy were analyzed. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of the association between nut consumption and…
Metformin influences drug sensitivity in pancreatic cancer cells
Abstract Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5–10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction o…
Critical Roles of EGFR family members in breast cancer and breast cancer stem cells: Targets for therapy
The roles of the epidermal growth factor receptor (EGFR) signaling pathway in various cancers including breast, bladder, brain, colorectal, esophageal, gastric, head and neck, hepatocellular, lung, neuroblastoma, ovarian, pancreatic, prostate, renal and other cancers have been keenly investigated since the 1980's. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about this pathway and how its deregulation can lead to cancer and how it may be differentially regulated in various cell types. Multiple inhibitors to EGFR family members have been developed and many are in clinical use. Current research often focuses o…