0000000000037965

AUTHOR

Manfred Wagner

Dicyclopentaannelated Hexa-peri-hexabenzocoronenes with a Singlet Biradical Ground State

Abstract Synthesis of two dicyclopentaannelated hexa‐peri‐hexabenzocoronene (PHBC) regioisomers was carried out, using nonplanar oligoaryl precursors with fluorenyl groups: mPHBC 8 with two pentagons in the “meta”‐configuration was obtained as a stable molecule, while its structural isomer with the “para”‐configuration, pPHBC 16, could be generated and characterized only in situ due to its high chemical reactivity. Both PHBCs exhibit low energy gaps, as reflected by UV‐vis‐NIR absorption and electrochemical measurements. They also show open‐shell singlet ground states according to electron paramagnetic resonance (EPR) measurements and density functional theory (DFT) calculations. The use of…

research product

A Phenylene-Bridged Cyclohexa-meta-phenylene as Hexa-peri-hexabenzocoronene Precursor.

A phenylene-bridged cyclohexa-meta-phenylene was synthesized via intramolecular Yamamoto coupling of an appropriate p-quinquephenyl derivative carrying four m-chlorophenyl substituents. The structural proof could be obtained by single-crystal X-ray diffraction analysis, which also revealed a slightly strained structure with an internal phenylene bridge. Notably, this cyclo-meta-phenylene served as a novel precursor for hexa-peri-hexabenzocoronene (HBC). The cyclodehydrogenation proceeded smoothly, providing the corresponding HBC derivative as confirmed by MALDI-TOF-MS, and UV/Vis spectroscopy.

research product

Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing

Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generato…

research product

The poly(propylene oxide-co-ethylene oxide) gradient is controlled by the polymerization method: determination of reactivity ratios by direct comparison of different copolymerization models

An investigation of the highly relevant copolymerization of ethylene oxide (EO) and propylene oxide (PO) by in situ1H NMR spectroscopy shows striking differences in the copolymerization kinetics, depending on the polymerization method. Examination of the EO/PO copolymerization kinetics using iBu3Al for the monomer-activated anionic ring opening polymerization (AROP) confirmed a strong monomer gradient of the microstructure (rEO = 6.4, rPO = 0.16) in contrast to the known weak gradient in the conventional AROP (rEO = 2.8, rPO = 0.25). The first study via in situ1H-NMR kinetics of the copolymerization of PO and EO under heterogeneous double metal cyanide (DMC) catalysis, a method that produce…

research product

Squaric acid mediated chemoselective PEGylation of proteins: reactivity of single-step-activated α-amino poly(ethylene glycol)s.

The covalent attachment of poly(ethylene glycol) (PEG) to therapeutically active proteins (PEGylation) has become an important method to deal with the pharmacological difficulties of these polypeptides, such as short body-residence times and immunogenicity. However, the derivatives of PEG used for PEGylation lack further functional groups that would allow the addition of targeting or labeling moieties. Squaric acid diethyl ester was used for the chemoselective single-step activation of poly(ethylene glycol)s into the respective ester amides. The resultant selective protein-reactive poly(ethylene glycol)s were investigated with respect to their selectivity towards amino acid residues in bovi…

research product

Kontrollierte Polymermikrostruktur in anionischer Polymerisation durch Kompartimentierung

research product

Controlling the Polymer Microstructure in Anionic Polymerization by Compartmentalization.

An ideal random anionic copolymerization is forced to produce gradient structures by physical separation of two monomers in emulsion compartments. One monomer (M) is preferably soluble in the droplets, while the other one (D) prefers the continuous phase of a DMSO-in-cyclohexane emulsion. The living anionic copolymerization of two activated aziridines is thus confined to the DMSO compartments as polymerization occurs selectively in the droplets. Dilution of the continuous phase adjusts the local concentration of monomer D in the droplets and thus the gradient of the resulting copolymer. The copolymerizations in emulsion are monitored by real-time 1 H NMR kinetics, proving a change of the re…

research product

Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups

The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer …

research product

Macromol. Rapid Commun. 17/2016

research product

Bio-predictive tablet disintegration: Effect of water diffusivity, fluid flow, food composition and test conditions

Abstract Food intake may delay tablet disintegration. Current in vitro methods have little predictive potential to account for such effects. The effect of a variety of factors on the disintegration of immediate release tablets in the gastrointestinal tract has been identified. They include viscosity of the media, precipitation of food constituents on the surface of the tablet and reduction of water diffusivity in the media as well as changes in the hydrodynamics in the surrounding media of the solid dosage form. In order to improve the predictability of food affecting the disintegration of a dosage form, tablet disintegration in various types of a liquefied meal has been studied under stati…

research product

The Unique Versatility of the Double Metal Cyanide (DMC) Catalyst: Introducing Siloxane Segments to Polypropylene Oxide by Ring-Opening Copolymerization.

The combination of hydrophobic polydimethylsiloxane (PDMS) blocks with hydrophilic polyether segments plays a key role for silicone surfactants. Capitalizing on the double metal cyanide (DMC) catalyst, the direct (i.e., statistical) copolymerization of cyclic siloxanes and epoxides is shown to be feasible. The solvent-free one-pot copolymerization of hexamethylcyclotrisiloxane and propylene oxide results in the formation of gradient propylene oxide (PPO)-PDMS copolymers. Copolymers with up to 46% siloxane content with low dispersities (Ð < 1.2) are obtained in the molecular weight range of 2100-2900 g mol-1 . The polymerization kinetics are investigated by pressure monitoring and in situ 1 …

research product

Encapsulation of polyprodrugs enables an efficient and controlled release of dexamethasone

Water-soluble low molecular weight drugs, such as the synthetic glucocorticoid dexamethasone (DXM), can easily leak out of nanocarriers after encapsulation due to their hydrophilic nature and small size. This can lead to a reduced therapeutic efficacy and therefore to unwanted adverse effects on healthy tissue. Targeting DXM to inflammatory cells of the liver like Kupffer cells or macrophages is a promising approach to minimize typical side effects. Therefore, a controlled transport to the cells of interest and selective on-site release is crucial. Aim of this study was the development of a DXM-phosphate-based polyprodrug and the encapsulation in silica nanocontainers (SiO2 NCs) for the red…

research product

Oligofluorene with multiple spiro-connections: its and their use in blue and white OLEDs

Bond rotation within molecules is regarded as one of the nonradiative decay pathways and is detrimental to high photoluminescence quantum yields. In this work, a bulky and rigid blue emitter (Spiro-F) with five spiro-carbon linkages is synthesized. Spiro-F can serve not only as an active component of blue organic light-emitting diodes (OLEDs), but also as a host and blue emitter of white OLEDs. The WOLED offers a low turn-on voltage of 3.5 V and a high current efficiency of 3.6 cd A−1, together with CIE coordinates of (0.29, 0.33). This work proves the potential of super-rigid oligofluorene emitters for OLEDs.

research product

Regioselective Hydrogenation of a 60-Carbon Nanographene Molecule toward a Circumbiphenyl Core.

Regioselective peripheral hydrogenation of a nanographene molecule with 60 contiguous sp2 carbons provides unprecedented access to peralkylated circumbiphenyl (1). Conversion to the circumbiphenyl core structure was unambiguously validated by MALDI-TOF mass spectrometry, NMR, FT-IR, and Raman spectroscopy. UV–vis absorption spectra and DFT calculations demonstrated the significant change of the optoelectronic properties upon peripheral hydrogenation. Stimulated emission from 1, observed via ultrafast transient absorption measurements, indicates potential as an optical gain material.

research product

A Nonconventional Approach toward Multihydroxy Functional Polystyrenes Relying on a Simple Grignard Reagent

Capitalizing on the inertness of styrene toward Grignard reagents, 4-vinylphenylmagnesium bromide was utilized for the rapid and convenient preparation of the protected monomer 2,2-dimethyl-4-(4-vi...

research product

Amino-Acid-Based Polymerizable Surfactants for the Synthesis of Chiral Nanoparticles

Amino-acid-based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac-asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization.

research product

Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime

For nanocarriers with low protein affinity, we show that the interaction of nanocarriers with cells is mainly affected by the density, the molecular weight, and the conformation of polyethylene glycol (PEG) chains bound to the nanocarrier surface. We achieve a reduction of nonspecific uptake of ovalbumin nanocarriers by dendritic cells using densely packed PEG chains with a "brush" conformation instead of the collapsed "mushroom" conformation. We also control to a minor extent the dysopsonin adsorption by tailoring the conformation of attached PEG on the nanocarriers. The brush conformation of PEG leads to a stealth behavior of the nanocarriers with inhibited uptake by phagocytic cells, whi…

research product

Solution-processed transparent ferroelectric nylon thin films

We have developed a method to solution process strongly hydrogen-bonded odd nylons into ferroelectric thin films.

research product

Well-Defined Multi-Amino-Functional and Stimuli-Responsive Poly(propylene oxide) by Crown Ether Assisted Anionic Ring-Opening Polymerization

Multi-amino-functional poly(propylene oxide) (PPO) copolymers were synthesized by the anionic ring-opening copolymerization (AROP) of N,N-diethyl glycidyl amine (DEGA) and propylene oxide (PO). A solvent free synthesis route using potassium counterions and crown ether for the AROP enabled controlled (co)polymerization with full conversion. The strategy provided access to PPO-b-PDEGA block copolymers, statistical PPO-co-PDEGA copolymers, and, for the first time, PDEGA homopolymer. Molecular weights in the range of 1400 to 4200 g/mol (Mn) and dispersities (Mw/Mn) below 1.1 were obtained. Both the kinetics and resulting microstructure of the statistical copolymerization were investigated by in…

research product

Hydrophobic Encapsulated Phosphonium Salts-Synthesis of Weakly Coordinating Cations and their Application in Wittig Reactions

Large and rigid tetraarylphosphonium tetrafluoroborate salts have been synthesized representing weakly coordinating cations with diameters of several nanometers. Divergent dendritic growth by means of thermal Diels-Alder cycloaddition was employed for the construction of the hydrophobic polyphenylene framework up to the third generation. X-ray crystal structure analysis of first-generation phosphonium tetrafluoroborate supported the rigidity of the non-collapsible shell around the phosphorus center and gave insight into solid-state packing and cation-anion distances. Copper(I)-catalyzed azide-alkyne ligation served as reliable method for the preparation of a first-generation triazolylphenyl…

research product

Fluorescent nanodiamonds encapsulated byCowpea Chlorotic Mottle Virus(CCMV) proteins for intracellular 3D-trajectory analysis

Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-ma…

research product

Mechanistic Understanding of Food Effects: Water Diffusivity in Gastrointestinal Tract Is an Important Parameter for the Prediction of Disintegration of Solid Oral Dosage Forms

Much interest has been expressed in this work on the role of water diffusivity in the release media as a new parameter for predicting drug release. NMR was used to measure water diffusivity in different media varying in their osmolality and viscosity. Water self-diffusion coefficients in sucrose, sodium chloride, and polymeric hydroxypropyl methylcellulose (HPMC) solutions were correlated with water uptake, disintegration, and drug release rates from trospium chloride immediate release tablets. The water diffusivity in sucrose solutions was significantly reduced compared to polymeric HPMC and molecular sodium chloride solutions. Water diffusivity was found to be a function of sucrose concen…

research product

ALTMET Polymerization of Amino Acid-Based Monomers Targeting Controlled Drug Release

Giving the imminent necessity of a new generation of biodegradable and biocompatible polymers prepared from feedstock, the synthesis of a potentially biodegradable amino acid-based copolymer by the alternating diene metathesis (ALTMET) strategy is herein presented. The reaction was tailored to minimize isomerization and deactivation of ruthenium catalysts by intramolecular coordination with the amide carbonyl group of the amino-acid-based monomer. Alternated l-lysine–phosphoester copolymers with molar masses higher than 18 000 g/mol were obtained using Hoveyda–Grubbs second-generation and Umicore M2 catalysts. The copolymer was further used to prepare nanoparticles loaded with rifampicin (u…

research product

Ferrocene-Containing Multifunctional Polyethers: Monomer Sequence Monitoring via Quantitative 13C NMR Spectroscopy in Bulk

Ferrocenyl glycidyl ether (fcGE) and allyl glycidyl ether (AGE) are copolymerized via living anionic ring-opening polymerization to generate polyfunctional copolymers with molecular weights up to 40 300 g/mol and low molecular weight dispersities (Mw/Mn < 1.18). Copolymerizations were carried out in bulk at 100 °C and unexpectedly found to proceed without any isomerization of the allyl double bonds. The copolymerization behavior of fcGE and AGE was monitored by in situ quantitative 13C NMR kinetic measurements in bulk, evidencing the formation of random copolymers under these conditions, showing no gradient of comonomer incorporation. The redox-active behavior of the copolymers and homopoly…

research product

Red-Light-Controlled Release of Drug-Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments

Traditional photodynamic phototherapy is not efficient for anticancer treatment because solid tumors have a hypoxic microenvironment. The development of photoactivated chemotherapy based on photoresponsive polymers that can be activated by light in the “therapeutic window” would enable new approaches for basic research and allow for anticancer phototherapy in hypoxic conditions. This work synthesizes a novel Ru‐containing block copolymer for photoactivated chemotherapy in hypoxic tumor environment. The polymer has a hydrophilic poly(ethylene glycol) block and a hydrophobic Ru‐containing block, which contains red‐light‐cleavable (650–680 nm) drug–Ru complex conjugates. The block copolymer se…

research product

Cruciform Electron Acceptors Based on Tetraindeno-Fused Spirofluorene

Two cruciform tetraindenospirofluorene-based acceptors embedding carbonyl (Spiro-4O) and dicyanovinylene (Spiro-8CN) functionalities are synthesized in high yields. Single-crystal X-ray analysis reveals a one-dimensional π–π stacking arrangement for Spiro-4O, while Spiro-8CN adopts a unique two-dimensional isotropic π-interaction. Cyclic voltammetry suggests a high electron affinity of −3.76 eV for Spiro-8CN. Such a packing motif and low LUMO energy for Spiro-8CN are important for bulk electron transport.

research product

Synthesis of Precision Poly(1,3-adamantylene alkylene)s via Acyclic Diene Metathesis Polycondensation

[Image: see text] Fully saturated, aliphatic polymers containing adamantane moieties evenly distributed along the polymer backbone are of great interest due to their exceptional thermal stability, yet more synthetic strategies toward these polymers would be desirable. Herein, we report for the first time the synthesis of poly(1,3-adamantylene alkylene)s based on α,ω-dienes containing bulky 1,3-adamantylene defects precisely located on every 11th, 17th, 19th, and 21st chain carbon via acyclic diene metathesis polycondensation. All saturated polymers revealed excellent thermal stabilities (452–456 °C) that were significantly higher compared to those of structurally similar polyolefins with al…

research product

CCDC 1408336: Experimental Crystal Structure Determination

Related Article: Debin Xia, Xin Guo, Manfred Wagner, Martin Baumgarten, Dieter Schollmeyer, Klaus Müllen|2017|Cryst.Growth Des.|17|2816|doi:10.1021/acs.cgd.7b00272

research product

CCDC 1408347: Experimental Crystal Structure Determination

Related Article: Debin Xia, Xin Guo, Manfred Wagner, Martin Baumgarten, Dieter Schollmeyer, Klaus Müllen|2017|Cryst.Growth Des.|17|2816|doi:10.1021/acs.cgd.7b00272

research product

CCDC 1837456: Experimental Crystal Structure Determination

Related Article: Bastian Dumslaff, Manfred Wagner, Dieter Schollmeyer, Akimitsu Narita, Klaus Müllen|2018|Chem.-Eur.J.|24|11908|doi:10.1002/chem.201801949

research product

CCDC 1010016: Experimental Crystal Structure Determination

Related Article: Ralf Moritz, Manfred Wagner, Dieter Schollmeyer, Martin Baumgarten, Klaus M��llen|2015|Chem.-Eur.J.|21|9119|doi:10.1002/chem.201406370

research product