0000000000037982
AUTHOR
T. Feldker
Rydberg excitation of trapped cold ions: a detailed case study
We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.
Rydberg Excitation of a Single Trapped Ion.
We demonstrate excitation of a single trapped cold $^{40}$Ca$^+$ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d$^2$D$_{3/2}$ to 51 F, 52 F and 3d$^2$D$_{5/2}$ to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.
Towards Rydberg quantum logic with trapped ions
We demonstrate the excitation of ions to the Rydberg state $22F$ by vacuum ultraviolet radiation at a wavelength of $123\,\text{nm}$ combined with the coherent manipulation of the optical qubit transition in $^{40}\text{Ca}^+$. With a tightly focused beam at $729\,\text{nm}$ wavelength we coherently excite a single ion from a linear string into the metastable $3D_{5/2}$ state before a VUV pulse excites it to the Rydberg state. In combination with ion shuttling in the trap, we extend this approach to the addressed excitation of multiple ions. The coherent initialization as well as the addressed Rydberg excitation are key prerequisites for more complex applications of Rydberg ions in quantum …