0000000000037983

AUTHOR

Peter Zoller

Rydberg excitation of trapped cold ions: a detailed case study

We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.

research product

Coherent and incoherent phonon processes in artificial atoms

Carrier-phonon interaction in semiconductor quantum dots leads to three classes of phenomena: coherent effects (spectrum reconstruction) due to the nearly-dispersionless LO phonons, incoherent effects (transitions) induced by acoustical phonons and dressing phenomena, related to non-adiabatic, sub-picosecond excitation. Polaron spectra, relaxation times and dressing-related decoherence rates are calculated, in accordance with experiment.

research product

Atomic lattice excitons: from condensates to crystals

We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed by fermionic atoms in two bands of an optical lattice. Such a system provides a clean setup to study fundamental properties of excitons, ranging from condensation to exciton crystals (which appear for a large effective mass ratio between particles and holes). Using both mean-field treatments and 1D numerical computation, we discuss the properities of ALEs under varying conditions, and discuss in particular their preparation and measurement.

research product