0000000000038091

AUTHOR

Angela Ciaravella

Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe–Metis/Solar Orbiter Observations

Abstract The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R ⊙ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local p…

research product

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

research product

Analysis of a multi-wavelength time-resolved observation of a coronal loop

Several items on the diagnostics and interpretation of coronal loop observations are under debate. In this work, we analyze a well-defined loop system detected in a time-resolved observation in several spectral bands. The dataset includes simultaneous images in the TRACE 171 A, 195 A and 284 A bands, and Yohkoh/SXT, and two rasters taken with SoHO/CDS in twelve relevant lines. The loop is initially best visible in the TRACE 195 A filter band, and later in the 171 A filter band, with correspondence with the CDS raster images at log T \~ 6.0-6.1. We have taken as pixel-by-pixel background the latest TRACE, Yohkoh and CDS images where the loop has faded out. We examine the loop morphology evol…

research product

First light observations of the solar wind in the outer corona with the Metis coronagraph

In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I …

research product

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ult…

research product

Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…

research product

Ariel: Enabling planetary science across light-years

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm e…

research product

Role of clays in protecting adsorbed DNA against X-ray radiation

The X-ray emission of the young Sun was much harder and intense than today and might have played a significant role in the evolution of complex organics in protoplanetary environments. We investigate the effects of soft X-rays on tryptophan molecules in aqueous solutions at room temperature. As results of the irradiation experiments we detect several light species indicative of fragmentation, together with large molecular structures such as tryptophan dipeptide and tripeptide. Complexification is more evident in H2O solution than in D2O, probably due to isotopic effects. The abundances of peptides depend on the irradiation dose and decrease with increasing energy deposition. Radicals such a…

research product

Synthesis of complex organic molecules in soft x-ray irradiated ices

We study the chemical evolution of H2O:CO:NH3 ice mixtures irradiated with soft X-rays, in the range 250-1250 eV. We identify many nitrogen-bearing molecules such as e.g., OCN-, NH4+ , HNCO, CH3CN, HCONH2, and NH2COCONH2. Several infrared features are compatible with glycine or its isomers. During the irradiation, we detected through mass spectroscopy many species desorbing the ice. Such findings support either the infrared identifications and reveal less abundant species with not clear infrared features. Among them, m/z = 57 has been ascribed to methyl isocyanate (CH3NCO), a molecule of prebiotic relevance, recently detected in protostellar environments. During the warm up after the irradi…

research product

Thermal conduction and modeling of static stellar coronal loops

We have modeled stellar coronal loops in static conditions for a wide range of loop length, plasma pressure at the base of the loop and stellar surface gravity, so as to describe physical conditions that can occur in coronae of stars ranging from low mass dwarfs to giants as well as on a significant fraction of the Main-Sequence stars.

research product

The relative role of EUV radiation and X-rays in the heating of hydrogen-rich exoplanet atmospheres

Aims. We study the relative role of EUV and X-ray radiation in the heating of hydrogen-rich planet atmospheres with different composition and electron content. Methods. An accurate photo-ionization model has been used to follow the primary photo-electron energy deposition throughout the atmosphere. Results. Heating rates and efficiencies have been computed, together with column density cut-offs at which photons of given energies stop their heating production inside the atmosphere. Assuming 100 eV as the energy borderline between the extreme ultraviolet spectral range and X-rays we find that when the absorbing hydrogen column density is higher than 10 20 cm −2 only X-rays can heat the gas. E…

research product

Soft X-Ray Irradiation of Methanol Ice: Implication for H2CO Formation in Interstellar Regions

We performed 0.3 keV soft X-ray irradiation of a methanol ice at 8 K under ultra-high vacuum conditions. To the best of our knowledge, this is the first time that soft X-rays are used to study photolysis of ice analogs. Despite the low irradiation dose of 10{sup -6} photons molecule{sup -1}, the formation of formaldehyde has been observed. The results of our experiments suggest that X-rays may be a promising candidate to the formation of complex molecules in regions where UV radiation is severely inhibited.

research product

A stellar flare-coronal mass ejection event revealed by X-ray plasma motions

Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of fl…

research product

Non-local heat transport in static solar coronal loops

We investigate the limits of applicability of the Spitzer-Harm thermal conductivity in solar coronal loops and show that the ratio λ0/LTof electron mean-free path to temperature scale height in large-scale structures can approach the limits of the Spitzer-Harm theory. We use a non-local formulation of heat transport to compute a grid of loop models: the effects of non-local transport on the distribution of differential emission measure are particularly important in the coronal part of loops longer than the pressure scale height sp.We derive a scaling law for λ0/LTin the corona, showing that it grows exponentially with L/sp, and discuss effects of non-local heat transport in the transition r…

research product

X-ray versus Ultraviolet Irradiation of Astrophysical Ice Analogs Leading to Formation of Complex Organic Molecules

In astrochemistry, complex organic molecules (COMs) are defined as species with at least one C atom and six or more atoms in total. More than 70 COMs were detected toward various interstellar and c...

research product

Temperature effects on the performances of the ATHENA X-IFU thermal filters

The X-Ray Integral Field Unit (X-IFU) detector on-board ATHENA is an array of TES micro-calorimeters that will operate at ~50 mK. In the current investigated design, five thermal filters (TF) will be mounted on the cryostat shields to attenuate IR radiative load and avoid energy resolution degradation due to photon shot noise. Each filter consists of a thin polyimide film (~50 nm thick) coated with aluminum (~30 nm thick). Since the TF operate at different temperatures in the range 0.05-300 K, it is relevant to study how temperature affects their mechanical/optical performances (e.g. near edge absorption fine structures of the atomic elements in the filter material). Such results are crucia…

research product

Chemical Evolution of Interstellar Methanol Ice Analogs upon Ultraviolet Irradiation: The Role of the Substrate

An important issue in the chemistry of interstellar ices is the role of dust materials. In this work, we study the effect of an amorphous water-rich magnesium silicate deposited onto ZnSe windows on the chemical evolution of ultraviolet-irradiated methanol ices. For comparison, we also irradiate similar ices deposited onto bare ZnSe windows. Silicates are produced at relatively low temperatures exploiting a sol-gel technique. The chemical composition of the synthesized material reflects the forsterite stoichiometry. Si-OH groups and magnesium carbonates are incorporated during the process. The results show that the substrate material does affect the chemical evolution of the ice. In particu…

research product

Stellar X-ray heating of planet atmospheres

Aims. To investigate the effects of the stellar X-ray irradiation on planet atmospheres, we study the X-ray transfer and energy deposition in a hydrogen rich gas. Methods. We construct an accurate X-ray transfer model taking both photoionization and Compton scattering into account; the electron energy deposition is followed by tracking the discrete exchange processes between electrons and the gas mixture. Results. Exospheric heating rates are derived as functions of the pressure in model atmospheres using a wide range of X-ray luminosity, spectral hardness representative of different stellar ages, and distances from the parent star. The computed heating rates suggest that X-ray irradiation …

research product

The young hard active Sun: soft X-ray irradiation of tryptophan in water solutions

AbstractThe X-ray emission of the young Sun was much harder and intense than today and might have played a significant role in the evolution of complex organics in protoplanetary environments. We investigate the effects of soft X-rays on tryptophan molecules in aqueous solutions at room temperature. As results of the irradiation experiments we detect several light species indicative of fragmentation, together with large molecular structures such as tryptophan dipeptide and tripeptide. Complexification is more evident in H2O solution than in D2O, probably due to isotopic effects. The abundances of peptides depend on the irradiation dose and decrease with increasing energy deposition. Radical…

research product