0000000000038313

AUTHOR

Davide Zannoni

Tellurite-dependent blackening of bacteria emerges from the dark ages

Environmental contextAlthough tellurium is a relatively rare element in the earth’s crust, its concentration in some niches can be naturally high owing to unique geology. Tellurium, as the oxyanion, is toxic to prokaryotes, and although prokaryotes have evolved resistance to tellurium, no universal mechanism exists. We review the interaction of tellurite with prokaryotes with a focus on those unique strains that thrive in environments naturally rich in tellurium. AbstractThe timeline of tellurite prokaryotic biology and biochemistry is now over 50 years long. Its start was in the clinical microbiology arena up to the 1970s. The 1980s saw the cloning of tellurite resistance determinants whil…

research product

Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds

Rhodococcus sp. strain BCP1 (DSM 44980) co-metabolizes chlorinated compounds and mineralizes a broad range of alkanes being highly tolerant to these toxic chemicals. Here, we present the high-quality draft genome sequence of strain BCP1 consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNAs genes. Rhodococcus genus comprises Gram-positive, non-sporulating, aerobic bacteria that are widely distributed in the environment (1). Rhodococcus sp. strain BCP1 (formerly: Rhodococcus aetherovorans strain BCP1, DSM 44980) was selected from an aerobic butane-utilizing consortium as the prevailing isolate able to co-metabolize chloroform, vinyl chloride and tric…

research product

Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1

This is the accepted manuscript of the paper "Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1", published as final paper in "Frontiers in Microbiology Volume 10, 07 May 2019, Pages 888 https://doi.org/10.3389/fmicb.2019.00888”. Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria p…

research product

Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures

Metal(loid)s have a dual biological role as micronutrients and stress agents. A few geochemical and natural processes can cause their release in the environment, although most metal-contaminated sites derive from anthropogenic activities. Actinobacteria include high GC bacteria that inhabit a wide range of terrestrial and aquatic ecological niches, where they play essential roles in recycling or transforming organic and inorganic substances. The metal(loid) tolerance and/or resistance of several members of this phylum rely on mechanisms such as biosorption and extracellular sequestration by siderophores and extracellular polymeric substances (EPS), bioaccumulation, biotransformation, and me…

research product

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

research product

Tolerance, Adaptation, and Cell Response Elicited by Micromonospora sp. Facing Tellurite Toxicity: A Biological and Physical-Chemical Characterization

The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32−) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32− biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in…

research product

Biotechnology of Rhodococcus for the production of valuable compounds

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production o…

research product

Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: New metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

none 7 si Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 g…

research product

Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL−1 . The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survi…

research product

Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…

research product

Genome and phenotype microarray analyses of rhodococcus sp. BCP1 and rhodococcus opacus R7: Genetic determinants and metabolic abilities with environmental relevance

In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, includ- ing BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, b…

research product

Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …

research product