0000000000038339

AUTHOR

Mariagiorgia La Cerva

Optimization of net power density in Reverse Electrodialysis

Abstract Reverse Electrodialysis (RED) extracts electrical energy from the salinity difference between two solutions using selective ion exchange membranes. In RED, conditions yielding a large net power density (NPD) are generally desired, due to the still large cost of the membranes. NPD depends on a large number of physical and geometric parameters. Some of these, for example the inlet concentrations of concentrate and diluate, can be regarded as “scenario” variables, imposed by external constraints (e.g., availability) or chosen by different criteria than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, c…

research product

CFD simulation of Electrodialysis channels equipped with profiled membranes

Electrodialysis (ED) is a membrane-based electrochemical process that remove ions from a solution. The main use of ED is for the production of drinking water by brackish water desalination, but there are several other applications. ED is characterized by the coexistence and the interaction of different physical phenomena that affect the stack performance. Among them, fluid dynamics and mass transport are crucial: concentration polarization affects the limiting current density and the non-Ohmic voltage drop due to the chemical potential difference between the two solutions; pressure drop affects the pumping power consumption. Moreover, the total energy consumption depends also on the Ohmic v…

research product

Determination of limiting current density and current efficiency in electrodialysis units

Abstract A crucial parameter for the design and operation of electrodialysis (ED) units is the limiting current density (LCD). This is often identified with the diffusion-limited current density, which corresponds to the complete solute depletion in the layer adjacent to the membrane. Current-voltage curves obtained from measurements with electrodes in contact with the solution (i.e. without membranes) are consistent with this interpretation and exhibit a horizontal plateau identifying LCD. However, real ED systems show more complex behaviours, with a reduced-slope tract instead of a plateau and a third region in which the current increases more markedly (overlimiting current). The phenomen…

research product

Numerical simulation of electroconvection phenomena in electrodialysis

In water desalination by electrodialysis, the current density i cannot exceed specific constraints, notably the diffusion limit. Working at higher i (overlimiting current regime) would make higher desalination rates possible. The main phenomenon allowing overlimiting current densities is the electrokinetic instability that arises when a sufficiently intense electric potential gradient is imposed, and leads to electroconvective mixing in the near-wall layer. In this study, these phenomena were investigated by CFD. The governing equations were the Nernst-Planck transport equations for anions and cations, the Poisson equation for the electrical potential and the Navier-Stokes and continuity eq…

research product

Maximum Net Power Density Conditions in Reverse Electrodialysis Stacks

Reverse Electrodialysis (RED) harvests electrical energy from a salinity gradient. The maximum obtainable net power density (NPD) depends on many physical and geometric variables. Some have a monotonic (beneficial or detrimental) influence on NPD, and can be regarded as “scenario” variables chosen by criteria other than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, have contrasting effects, so that the NPD maximum is obtained for some intermediate values of these parameters. A 1-D model of a RED stack was coupled here with an optimization algorithm to determine the conditions of maximum NPD in the space o…

research product

Effect of membrane profiles on the limiting current density in electrodialysis

In the present work, we experimenrtally investigated the effect of different membrane profiles on the LCD, testing also different operating conditions.

research product

Numerical simulations supporting process models of chemical engineering: applications for membrane systems

This work presents computational fluid dynamics simulations aimed at characterizing flow and mass/heat transport mechanisms in spacer-filled channels for membrane processes, with particular reference to (reverse) electrodyalisis and membrane distillation.

research product

Coupling of electromembrane processes with reverse osmosis for seawater desalination: Pilot plant demonstration and testing

Reverse osmosis (RO) is the most widespread technology to produce drinking water from seawater (SW). However, the integration of different membrane processes offers interesting alternatives. In this work, electromembrane processes were integrated with RO to desalinate real seawater in a pilot plant with 25 m3/day capacity. Electrodialysis (ED, either two-stage or single stage), shortcut reverse electrodialysis (scRED) and assisted reverse electrodialysis (ARED) pre-desalinated seawater before RO with the ED-ED-RO, ED-RO, and scRED-ARED-RO process schemes. Treated wastewater was used as salt sink in the scRED-ARED tests. The performance of the pilot plant can be summarized as follows: water …

research product

On some issues in the computational modelling of spacer-filled channels for membrane distillation

Abstract This study addresses issues which arise in the computational and experimental modelling of flow and heat/mass transfer in membrane distillation and other processes adopting spacer-filled channels (either planar or spiral wound), but have not been sufficiently clarified in the literature so far. Most of the argumentations presented are based on original computational results obtained by the authors by finite volume simulations; some literature results are also considered. The questions addressed regard the choice of scales for the reduction of data and the definition of dimensionless numbers ( Re , f , Nu , Sh ); the definition of average heat or mass transfer coefficients; the comb…

research product

Modelling hybrid systems for seawater desalination: electromembrane processes (RED, ARED and ED) coupled with RO

The need to reduce energy consumption in seawater reverse osmosis processes has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis and reverse electrodialysis can act as a dilution step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO system. Each process model was validated before being used for a sensitivity analysis in which the effect of the integration on the cost saving in the overall process was assessed. The analysis was performed by changing (R)ED voltage and RO press…

research product

Modelling and cost analysis of hybrid systems for seawater desalination: Electromembrane pre-treatments for Reverse Osmosis

Abstract The need to reduce energy consumption in seawater Reverse Osmosis (RO) process has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis (ED) and Reverse Electrodialysis (RED) can act as a pre-desalting step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO systems. Each process model was validated. Then a sensitivity analysis was performed to assess the effect of the integration on the overall process cost saving. The analysis was performed by changing ED or RED voltage …

research product

Experiments and modelling for determining the Limiting Current Density in Electrodialysis units

In the present work, in order to explore such issues on the LCD identification, we performed in-situ measurements with ED units, assessing the influence of operating conditions and validating a purposely implemented process simulator, which was then used for further investigation

research product

Turbulent heat transfer in spacer-filled channels: Experimental and computational study and selection of turbulence models

Abstract Heat transfer in spacer-filled channels of the kind used in Membrane Distillation was studied in the Reynolds number range 100–2000, encompassing both steady laminar and early-turbulent flow conditions. Experimental data, including distributions of the local heat transfer coefficient h, were obtained by Liquid Crystal Thermography and Digital Image Processing. Alternative turbulence models, both of first order (k-e, RNG k-e, k-ω, BSL k-ω, SST k-ω) and of second order (LRR RS, SSG RS, ω RS, BSL RS), were tested for their ability to predict measured distributions and mean values of h. The best agreement with the experimental results was provided by first-order ω-based models able to …

research product

CFD parametrical study of the spacer geometry for Membrane Distillation

Membrane Distillation (MD) is a thermal process that separates water from aqueous solutions containing non-volatile components such as salt. Water vapor from the hot feed channel permeates through a hydrophobic membrane thanks to a partial pressure gradient, and condenses in the cool channel. One of the main advantages of MD is the easy coupling with renewable resources, as the solar thermal energy. In the various MD configurations developed, net spacers are used in order to support the membrane, thus creating the channels; moreover, they can counteract the side effects of temperature polarization by promoting mixing. However, the presence of the spacer involves an increase of pressure drop…

research product

CFD Investigation of Spacer-Filled Channels for Membrane Distillation

The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ran…

research product