0000000000038652

AUTHOR

B. Pang

showing 11 related works from this author

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

2018

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

AstronomyTestingdetectionGeneral Physics and AstronomyEFFICIENTTESTING RELATIVISTIC GRAVITYTensorsSpectral shapes01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundEnergy densityTOOLQCComputingMilieux_MISCELLANEOUSstochastic modelMathematical physicsQBPhysics[PHYS]Physics [physics]Stochastic systemsGravitational effectsarticleVectorsPolarization (waves)gravitational wavesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsGeneral RelativityCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitygr-qcFOS: Physical sciencesexperimental studies of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesRelativityReference frequencyPhysics and Astronomy (all)General Relativity and Quantum CosmologyTheory of relativityScalar modesTests of general relativity0103 physical sciencesAdvanced LIGOddc:530Tensor010306 general physicsSTFCGravitational Wavespolarization010308 nuclear & particles physicsGravitational waveRCUKAstrophysical sourcesLIGOPhysics and AstronomygravitationRADIATIONStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyGravitational Waves Stochastic Background Advanced LIGO
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

2019

Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…

Known Pulsars010504 meteorology & atmospheric sciencesAstronomyAstrophysicsTable (information)Velagravitational waves; pulsars01 natural sciencesPulsar0103 physical sciencesLimit (mathematics)010303 astronomy & astrophysicsgravitational waveComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesPhysics[PHYS]Physics [physics]Gravitational waveTwo HarmonicsAstronomy and AstrophysicsGravitational Waves Known Pulsars Two Harmonics ErratumLIGOAmplitudegravitational wavesSpace and Planetary SciencepulsarsErratumGlitch (astronomy)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysical Journal
researchProduct

First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

2017

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …

Gravitational-wave observatoryPhysics and Astronomy (miscellaneous)Astronomy01 natural sciencesrotationneutron starsGeneral Relativity and Quantum Cosmologygravitational waves; LIGO; stochastic gravitational-waveLIGOneutron star010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCpulsarQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gravitational Waves neutron stars advanced detectors narrow-band searchDetectorAmplitude[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaasymmetryCoherence (physics)young pulsarinterferometerneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)proper motionadvanced detectorsGravitational wavesPulsar0103 physical sciencesddc:530Gravitational Waves010308 nuclear & particles physicsGravitational wavegravitational radiation530 PhysikLIGOgravitational radiation detectorComputational physicscoherencedetector: sensitivityNeutron starelectromagneticPhysics and AstronomyGravitational waves; Pulsarnarrow-band searchDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]discovery
researchProduct

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

2017

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyCredible regionsGeneral Physics and Astronomyadvanced ligoADVANCED LIGOAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationVIRGO detectorFilter signalsGW170814TOOLLIGOInterferometerGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)010303 astronomy & astrophysicsQCchoiceQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectstoolFalse alarm rateCHOICEAntenna responseGravitational-wave signalsDetector networks[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenagravitational radiation: polarizationSignal processingAstrophysics::High Energy Astrophysical Phenomenablack hole: binary: coalescenceFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionGravitational-wave astronomy[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]General Relativity and Quantum CosmologyPhysics and Astronomy (all)Binary black hole0103 physical sciencesGW151226ddc:530KAGRASTFCGw150914GW170814 Virgo LIGO010308 nuclear & particles physicsGravitational wavePhysiqueVirgogravitational radiationAstronomyRCUKMatched filtersblack hole: massStarsLIGOgravitational radiation detectorBlack holeradiationVIRGOPhysics and AstronomyTesting Relativistic Gravitygravitationgravitational radiation: emissionStellar-mass black holesRADIATIONStellar black holeHigh Energy Physics::ExperimentAntennasDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Constraining the p -Mode– g -Mode Tidal Instability with GW170817

2019

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…

Physics010308 nuclear & particles physicsGravitational waveGeneral Physics and AstronomyBreaking wave7. Clean energy01 natural sciencesInstabilityComputational physicsNeutron starStarsAmplitude13. Climate action0103 physical sciencesWaveformExtreme value theory010303 astronomy & astrophysicsPhysical Review Letters
researchProduct

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data

2019

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …

AstronomyAstrophysicsRotation01 natural sciencesrotationGravitation Cosmology & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldscontinuous gravitational waveLIGOneutron starGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEPhysicsPhysical SystemsAmplitudeGeneral relativitygravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical Phenomenacontinuous gravitational waves; Advanced LIGOcontinuous gravitational wavesasymmetryGravitationNeutron stars & pulsarsGeneral relativityFrequency bandmedia_common.quotation_subjectgr-qcFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational waves0103 physical sciencesAdvanced LIGOddc:530Gravitation Cosmology & Astrophysics010306 general physicsgravitational radiation: frequencySTFCgravitational wavesneutron starsGravitational wave sourcesScience & TechnologyGravitational wave sources Gravitational waves Physical Systems Neutron stars and pulsars Gravitational wave detection010308 nuclear & particles physicsGravitational waveRCUKGravitational Wave PhysicsLIGONeutron stars & pulsarsNeutron starSkyNeutron stars and pulsarsDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

GW170817: Measurements of Neutron Star Radii and Equation of State

2018

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESGW170817BINARIESddc:550DENSELIGODENSE MATTEREquation of State010303 astronomy & astrophysicsQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsNeutron Star RadiusPhysicsGravitational effectsEquations of stateParametrizationsElectromagnetic observationsGravitational-wave signals3. Good healthQUADRUPOLE-MOMENTSMacroscopic propertiesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEquations of state of nuclear matterGravitational wavesaturation: densityBinary neutron starsNUCLEON MATTEREquations of state of nuclear matter; Gravitational wave sources; Gravitational waves; Nuclear matter in neutron starsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaGW170817 Neutron Star Radius Equation of StatePhysics Multidisciplinaryneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionGravitation and AstrophysicsNuclear matter in neutron starsGravitational waveselectromagnetic field: productionPhysics and Astronomy (all)Pulsargalaxy: binary0103 physical sciencesddc:530NeutronMASSESSTFCequation of state: parametrizationAstrophysics::Galaxy AstrophysicsNeutronsExtreme conditionsGravitational wave sourcesEquation of stateScience & TechnologyNeutron Star Interior Composition Explorer010308 nuclear & particles physicsGravitational wavegravitational radiationRCUKFlocculationSaturation densityUNIVERSAL RELATIONSStarsLIGOgravitational radiation detectorNeutron starStarsVIRGOPhysics and Astronomygravitational radiation: emissionneutron star: binary: coalescenceDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]MATTER
researchProduct