0000000000039491

AUTHOR

James G. Bartlett

showing 17 related works from this author

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

2018

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

AstronomyTestingdetectionGeneral Physics and AstronomyEFFICIENTTESTING RELATIVISTIC GRAVITYTensorsSpectral shapes01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundEnergy densityTOOLQCComputingMilieux_MISCELLANEOUSstochastic modelMathematical physicsQBPhysics[PHYS]Physics [physics]Stochastic systemsGravitational effectsarticleVectorsPolarization (waves)gravitational wavesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsGeneral RelativityCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitygr-qcFOS: Physical sciencesexperimental studies of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesRelativityReference frequencyPhysics and Astronomy (all)General Relativity and Quantum CosmologyTheory of relativityScalar modesTests of general relativity0103 physical sciencesAdvanced LIGOddc:530Tensor010306 general physicsSTFCGravitational Wavespolarization010308 nuclear & particles physicsGravitational waveRCUKAstrophysical sourcesLIGOPhysics and AstronomygravitationRADIATIONStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyGravitational Waves Stochastic Background Advanced LIGO
researchProduct

Electron and Photon Identification in the D0 Experiment

2013

The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.

Nuclear and High Energy PhysicsPhotonMonte Carlo methodTevatronFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsResolution (electron density)D0 experiment3. Good healthExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

2018

Made available in DSpace on 2018-11-26T17:45:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-22 Australian Research Council Council of Scientific and Industrial Research of India Department of Science and Technology, India Science AMP; Engineering Research Board (SERB), India Ministry of Human Resource Development, India Spanish Agencia Estatal de Investigacion Vicepresidencia i Conselleria d'Innovacio, Recerca i Turisme Conselleria d'Educacio i Universitat del Govern de les Illes Balears Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana National Science Centre of Poland Swiss National Science Foundation (SNSF) Russian Foundation for Basic Rese…

Physics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsLIGO-VirgoMagnetar01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational waves long transients LIGOGravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSSearch algorithmSIGNALS0103 physical sciencesWaveformlong transientsHigh Energy PhysicsLIGO010306 general physicsgravitational wave010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLIGO-Virgo; gravitational waves; long duration transient[PHYS]Physics [physics]Gravitational wavelong duration transientLIGOgravitational waves; LIGO-Virgo; long duration transient; Physics and Astronomy (miscellaneous)Black holeMODELNeutron starAmplitudegravitational wavesBLACK-HOLEComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONNEUTRINOAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Evidence for Zc±(3900) in semi-inclusive decays of b -flavored hadrons

2018

We present evidence for the exotic charged charmoniumlike state Zc±(3900) decaying to J/ψπ± in semi-inclusive weak decays of b-flavored hadrons. The signal is correlated with a parent J/ψπ+π- system in the invariant-mass range 4.2-4.7 GeV that would include the exotic structure Y(4260). The study is based on 10.4 fb-1 of pp collision data collected by the D0 experiment at the Fermilab Tevatron collider. © 2018 authors. Published by the American Physical Society.

PhysicsParticle physics010308 nuclear & particles physicsHadronTevatronD0 experiment01 natural scienceslaw.inventionlaw0103 physical sciencesHigh Energy Physics::ExperimentStatistical analysisFermilab010306 general physicsColliderPhysical Review D
researchProduct

Improved $b$ quark jet identification at the D0 experiment

2013

The ability to identify jets which originated from $b$ quarks is an important tool of the physics program of the D0 experiment at the Fermilab Tevatron $p\bar{p}$ collider. This article describes a new algorithm designed to select jets originating from $b$ quarks while suppressing the contamination caused by jets from other quark flavors and gluons. Additionally, a new technique, the SystemN method, for determining the misidentification rate directly from data is presented.

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryTevatronFOS: Physical sciencesJet (particle physics)01 natural sciencesBottom quarkHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyD0 experimentGluonExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

2017

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …

Gravitational-wave observatoryPhysics and Astronomy (miscellaneous)Astronomy01 natural sciencesrotationneutron starsGeneral Relativity and Quantum Cosmologygravitational waves; LIGO; stochastic gravitational-waveLIGOneutron star010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCpulsarQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gravitational Waves neutron stars advanced detectors narrow-band searchDetectorAmplitude[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaasymmetryCoherence (physics)young pulsarinterferometerneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)proper motionadvanced detectorsGravitational wavesPulsar0103 physical sciencesddc:530Gravitational Waves010308 nuclear & particles physicsGravitational wavegravitational radiation530 PhysikLIGOgravitational radiation detectorComputational physicscoherencedetector: sensitivityNeutron starelectromagneticPhysics and AstronomyGravitational waves; Pulsarnarrow-band searchDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]discovery
researchProduct

Measurement of the Effective Weak Mixing Angle in pp¯→Z/γ*→ℓ+ℓ− Events

2018

We present a measurement of the effective weak mixing angle parameter sin(2)theta(l)(eff) in p (p) over bar -> Z/gamma* -> mu(+)mu(-) events at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider and corresponding to 8.6 fb(-1) of integrated luminosity. The measured value of sin(2)theta(l)(eff)[mu mu] = 0.23016 +/- 0.00064 is further combined with the result from the D0 measurement in p (p) over bar -> Z/gamma* -> e(+)e(-) events, resulting in sin(2)theta(l)(eff)[comb] = 0.23095 +/- 0.00040. This combined result is the most precise measurement from a single experiment at a hadron collider and is the most precise determination using the couplin…

QuarkPhysicsLuminosity (scattering theory)Large Hadron Collider010308 nuclear & particles physicsTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energylaw.inventionNuclear physicslaw0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsColliderMixing (physics)Bar (unit)Physical Review Letters
researchProduct

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

2017

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyCredible regionsGeneral Physics and Astronomyadvanced ligoADVANCED LIGOAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationVIRGO detectorFilter signalsGW170814TOOLLIGOInterferometerGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)010303 astronomy & astrophysicsQCchoiceQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectstoolFalse alarm rateCHOICEAntenna responseGravitational-wave signalsDetector networks[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenagravitational radiation: polarizationSignal processingAstrophysics::High Energy Astrophysical Phenomenablack hole: binary: coalescenceFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionGravitational-wave astronomy[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]General Relativity and Quantum CosmologyPhysics and Astronomy (all)Binary black hole0103 physical sciencesGW151226ddc:530KAGRASTFCGw150914GW170814 Virgo LIGO010308 nuclear & particles physicsGravitational wavePhysiqueVirgogravitational radiationAstronomyRCUKMatched filtersblack hole: massStarsLIGOgravitational radiation detectorBlack holeradiationVIRGOPhysics and AstronomyTesting Relativistic Gravitygravitationgravitational radiation: emissionStellar-mass black holesRADIATIONStellar black holeHigh Energy Physics::ExperimentAntennasDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Jet energy scale determination in the D0 experiment

2013

The calibration of jet energy measured in the \DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT > 6 GeV and pseudorapidity range |eta| < 3.6. The corrections are measured separately for data and simulation, achieving a precision of 1.4%-1.8% for jets in the central part of the calorimeter and up to 3.5% for the jets with pseudorapidity…

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesParton7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderNuclear ExperimentInstrumentationPhysicsJet (fluid)Calorimeter (particle physics)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGluonPseudorapidityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

2016

We measure the top quark mass in dilepton final states of top-antitop events in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb^-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. We also improve the calibration of jet energies using the calibration determined in top-antitop to lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured top quark mass is mt = 173.32 +/- 1.36(stat) +/- 0.85(syst) GeV.

Top quarkdependence [flavor]TevatronATLAS DETECTORJet (particle physics)pair production [top]7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSBatavia TEVATRON CollFermilabNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Physicsscattering [anti-p p]Luminosity (scattering theory)PhysicsNuclear & Particles Physicslcsh:QC1-999Physics NuclearPhysical SciencesPOLEflavor [quark]mass: measured [top]Neutrinotop quark mass; dilepton decays; neutrino weightingdata analysis methodParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaSTANDARD MODELFOS: Physical sciencesAstronomy & AstrophysicsAccelerator Physics and Instrumentation530Standard ModelNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physicsfinal state [dilepton]0103 physical sciencesMODEL HIGGS-BOSONddc:530High Energy Physics010306 general physics1960 GeV-cmsScience & TechnologyPP COLLISIONSIDENTIFICATION010308 nuclear & particles physicsDATA processing & computer scienceHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringenergy [jet]PRODUCTION CROSS-SECTION(MS)OVER-BAR MASSEScalibration [jet]Experimental High Energy PhysicsPhysics::Accelerator PhysicsTEVHigh Energy Physics::Experimentddc:004statisticalcolliding beams [anti-p p]lcsh:Physicsexperimental resultsLepton
researchProduct

Tevatron Run II combination of the effective leptonic electroweak mixing angle

2018

The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.

Drell-Yan processsemianalytical programsPhysics and Astronomy (miscellaneous)FERMION PAIR PRODUCTIONUPGRADETevatronhadron-colliders01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & Fieldselectron: pair productionHigh Energy Physics - Experiment (hep-ex)MONTE-CARLOUNIVERSAL MONTE-CARLOELECTROMAGNETIC CALORIMETERDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSangular distributionBatavia TEVATRON CollMonte CarloPhysicsscattering [anti-p p]gauge bosonPhysicsElectroweak interactionDrell–Yan processWeinberg anglespontaneous symmetry breaking [electroweak interaction]muon: pair productionPhysical Sciencesmixing angle [electroweak interaction]bosonPHOTOSmass: measured [W]asymmetryParticle physicsFOS: Physical sciencesSEMIANALYTICAL PROGRAMddc:500.2Astronomy & Astrophysicselectroweak interaction: spontaneous symmetry breaking114 Physical sciences530programmingW: mass: measuredStandard Modelanti-p p: colliding beams[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hadroproduction [Z0]0103 physical sciencesanti-p p: scatteringddc:530High Energy Physicspair production [electron]pair production [muon]CALORIMETER010306 general physicsQED RADIATIVE-CORRECTIONSQed radiative-corrections; fermion pair production; universal; Monte Carlo; parton distributions; hadron-colliders; electromagnetic; calorimeter;semianalytical programs; E(+)E(-) annihilation; boson; production; D0 detectorGauge bosonBOSON PRODUCTIONMuonScience & Technologyelectroweak interaction: mixing angleAnti-p p: scattering | anti-p p: colliding beams | Z0: hadroproduction | Z0: leptonic decay | electroweak interaction: spontaneous symmetry breaking | electroweak interaction: mixing angle | muon: pair production | W: mass: measured | Weinberg angle | Batavia TEVATRON Coll | angular distribution | electron: pair production | Drell-Yan process | gauge boson | programming | asymmetry | CDF | DZERO | experimental resultsIDENTIFICATION010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyuniversalWeinberg angleZ0: hadroproductionQED RADIATIVE-CORRECTIONS; FERMION PAIR PRODUCTION; UNIVERSAL; MONTE-CARLO; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC; CALORIMETER; SEMIANALYTICAL PROGRAM; E(+)E(-) ANNIHILATION; BOSON; PRODUCTION; D0 DETECTORleptonic decay [Z0]E(+)E(-) ANNIHILATIONelectromagneticPARTON DISTRIBUTIONSExperimental High Energy PhysicsZ0: leptonic decayD0 DETECTORCDFHigh Energy Physics::Experimentproductioncolliding beams [anti-p p]Leptonexperimental results
researchProduct

Measurement of the muon charge asymmetry from W boson decays

2008

We present a measurement of the muon charge asymmetry from W boson decays using 0.3 fb^{-1} of data collected at \sqrt{s}=1.96 GeV between 2002 and 2004 with the D0 detector at the Fermilab Tevatron ppbar Collider. We compare our findings with expectations from next-to-leading-order calculations performed using the CTEQ6.1M and MRST04 NLO parton distribution functions. Our findings can be used to constrain future parton distribution function fits.

PhysicsNuclear and High Energy PhysicsParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronFOS: Physical sciencesCharge (physics)Parton01 natural sciencesHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)Distribution functionlaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFermilab010306 general physicsColliderNuclear ExperimentBoson
researchProduct

Measurement of spin correlation between top and antitop quarks produced in pp¯ collisions at s=1.96 TeV

2016

Department of Energy (United States of America); National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission (France); National Center for Scientific Research/ National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy (India); Department of Science…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsmedia_common.quotation_subjectAtomic energyLibrary science7. Clean energy01 natural scienceslanguage.human_languageBildungGermanNuclear physicsState (polity)Basic research0103 physical scienceslanguageChristian ministry010306 general physicsChinaResearch centermedia_commonPhysics Letters B
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

Study of the X±(5568) state with semileptonic decays of the Bs0 meson

2018

We present a study of the X±(5568) using semileptonic decays of the Bs0 meson using the full run II integrated luminosity of 10.4  fb-1 in proton-antiproton collisions at a center of mass energy of 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. We report evidence for a narrow structure, X±(5568), in the decay sequence X±(5568)→Bs0π± where Bs0→μ∓Ds±X, Ds±→ϕπ± which is consistent with the previous measurement by the D0 Collaboration in the hadronic decay mode, X±(5568)→Bs0π± where Bs0→J/ψϕ. The mass and width of this state are measured using a combined fit of the hadronic and semileptonic data, yielding m=5566.9-3.1+3.2(stat)-1.2+0.6(syst)  MeV/c2, Γ=18.6-6.1+7.9(s…

PhysicsParticle physicsLuminosity (scattering theory)Meson010308 nuclear & particles physicsHadronTevatronState (functional analysis)01 natural sciences7. Clean energylaw.inventionlaw0103 physical sciencesHigh Energy Physics::ExperimentCenter of massFermilabNuclear Experiment010306 general physicsColliderPhysical Review D
researchProduct

Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

2018

The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of √s=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is At¯tFB=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

Top quarkTevatronGeneral Physics and Astronomypair production [top]01 natural sciences7. Clean energyHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physicsddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum ChromodynamicsBatavia TEVATRON CollGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonPhysicsscattering [anti-p p]Particle properties02 Physical Sciencesrapidity: differenceCDF; Tevatron; top-quarkPhysicsdifference [rapidity]asymmetry [angular distribution]kinematicsPhysical Sciencestop: pair productionQuarkParticle physicsGeneral Physicsangular distribution: asymmetryTevatron Collidermedia_common.quotation_subjectPhysics MultidisciplinaryFOS: Physical sciencesForward backwardddc:500.2Hadron-hadron interactionsAsymmetryComputer Science::Digital Libraries114 Physical sciencesMarie curieCDF Collaborationanti-p p: colliding beamsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesanti-p p: scatteringmedia_common.cataloged_instanceddc:530High Energy PhysicsEuropean union010306 general physicsScience & Technology1960 GeV-cms010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyTop quarkQ007TFBResearch councilExperimental High Energy PhysicsCDFHigh Energy Physics::Experimentcolliding beams [anti-p p]High Energy Physics Top quark Hadron-hadron interactions Quantum Chromodynamics Particle properties Tevatron ColliderD0 Collaborationexperimental resultsPhysical Review Letters
researchProduct