0000000000039813

AUTHOR

Marcus Krüger

showing 6 related works from this author

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1

2021

Abstract Richter’s transformation (RT) is an aggressive lymphoma that occurs upon progression from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a significant proportion of RT cases lack CLL phase–associated events. Here, we report that high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the murine Eµ-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly reduced survival and an aggressive lymphoma phenotype. In the absence of recurren…

0301 basic medicineTumor microenvironmentChronic lymphocytic leukemiaImmunologyNotch signaling pathwayMedizinAggressive lymphomaCell BiologyHematologyBiologymedicine.diseaseBiochemistrySomatic evolution in cancerLymphoma03 medical and health sciencesLeukemia030104 developmental biology0302 clinical medicineimmune system diseaseshemic and lymphatic diseasesmedicineCancer researchneoplasmsProtein kinase B030215 immunology
researchProduct

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Proteomics of Galápagos Marine Iguanas Links Function of Femoral Gland Proteins to the Immune System

2020

Femoral glands secrete a wax-like substance on the inner side of lizard hind legs, which is thought to function as a mode of chemical communication. Though the minor volatile fraction is well studied, the major protein fraction remains enigmatic. Here, we use proteomics to analyze proteins in femoral gland secretions of the Galápagos marine iguana. Although we found no evidence for proteins and peptides involved in chemical communication, we found several immune-regulatory proteins which also demonstrate anti-microbial functions. Accordingly, we show that femoral gland proteins and peptides function as a barrier against microbial infection and may prevent the rapid degradation of volatile s…

ProteomicsProteomeProteomicsBiochemistryAnalytical ChemistryAnti-Infective AgentsTandem Mass Spectrometrydatabase designprotease inhibitor protein identificationLungSkin0303 health sciencesMuscles030302 biochemistry & molecular biologyBrainHigh-Throughput Nucleotide SequencingHeartBlood proteinsanimal modelsmarine iguanaBiochemistryOrgan SpecificityProteomeEcuadorBacillus subtilisPulmonary Surfactant-Associated ProteinsGalectinsAntileukoproteinaseBiologyprotease inhibitor03 medical and health sciencesproteomicsImmune systemfemoral glandsevolutionEndopeptidasesEscherichia coliAnimalsHumanstissuesMolecular Biology030304 developmental biologyGalectinInnate immune systemChemotactic FactorsResearchMyocardiumImmunity Innateimmune systemIguanasMuramidaseApoproteinsTranscriptomeFunction (biology)Molecular & Cellular Proteomics
researchProduct

Skeletal muscle-specific methyltransferase METTL21C trimethylates p97 and regulates autophagy-associated protein breakdown

2018

Summary: Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a β-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c−/− muscles. In addition, w…

0301 basic medicineMaleATPaseVacuoleProtein degradationProtein aggregationMethylationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceValosin Containing ProteinmedicineAutophagyAnimalsddc:610Muscle Skeletallcsh:QH301-705.5Mice KnockoutbiologyChemistryAutophagySkeletal muscleMuscle weaknessMethyltransferasesMuscle atrophyCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)Proteolysisbiology.proteinmedicine.symptom
researchProduct

Phosphoproteomics of the developing heart identifies PERM1 - An outer mitochondrial membrane protein.

2021

Heart development relies on PTMs that control cardiomyocyte proliferation, differentiation and cardiac morphogenesis. We generated a map of phosphorylation sites during the early stages of cardiac postnatal development in mice; we quantified over 10,000 phosphorylation sites and 5000 proteins that were assigned to different pathways. Analysis of mitochondrial proteins led to the identification of PGC-1- and ERR-induced regulator in muscle 1 (PERM1), which is specifically expressed in skeletal muscle and heart tissue and associates with the outer mitochondrial membrane. We demonstrate PERM1 is subject to rapid changes mediated by the UPS through phosphorylation of its PEST motif by casein ki…

0301 basic medicineProteomicsOrganogenesisMFN2Muscle ProteinsP70-S6 Kinase 1030204 cardiovascular system & hematologyMitochondrionMitochondria Heart03 medical and health sciencesMice0302 clinical medicineCa2+/calmodulin-dependent protein kinaseAnimalsMolecular BiologyMitochondrial transportMice KnockoutChemistryMyocardiumPhosphoproteomicsMembrane ProteinsHeartLipid MetabolismPhosphoproteinsSolute carrier familyCell biology030104 developmental biologyMitochondrial MembranesPhosphorylationCardiology and Cardiovascular MedicineJournal of molecular and cellular cardiology
researchProduct