0000000000039820

AUTHOR

Nevenka Dudvarski Stankovic

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

research product

VEGF and Notch Signaling in Angiogenesis

The vascular system is responsible for providing every cell in vertebrate organisms with a sufficient supply of oxygen and nutrients, allowing waste disposal as well as transmitting immune responses among other functions. Thus, every tissue and organ requires an efficient network of blood vessels, which can be formed de novo (vasculogenesis) or from existing vessels (angiogenesis). The onset of the latter, namely endothelial cell (EC) sprouting, is the focus of this chapter. EC sprouting starts with the differentiation of ECs into guiding tip cells and proliferative stalk cells that form the growing sprout and it ends with the so-called anastomosis, when the sprout fuses with another sprout…

research product

EGFL7 enhances surface expression of integrin α5β1 to promote angiogenesis in malignant brain tumors

Abstract Glioblastoma (GBM) is a typically lethal type of brain tumor with a median survival of 15 months postdiagnosis. This negative prognosis prompted the exploration of alternative treatment options. In particular, the reliance of GBM on angiogenesis triggered the development of anti‐VEGF (vascular endothelial growth factor) blocking antibodies such as bevacizumab. Although its application in human GBM only increased progression‐free periods but did not improve overall survival, physicians and researchers still utilize this treatment option due to the lack of adequate alternatives. In an attempt to improve the efficacy of anti‐VEGF treatment, we explored the role of the egfl7 gene in ma…

research product