0000000000039857

AUTHOR

Annette K. Miltenberger

0000-0003-3320-4272

showing 9 related works from this author

Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment

2021

AbstractThis study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several c…

Convection[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceBuoyancy010504 meteorology & atmospheric sciencesPerturbation (astronomy)engineering.materialAtmospheric sciences01 natural sciences010305 fluids & plasmasTroposphere13. Climate action0103 physical sciencesConvective cloudengineeringCloud condensation nucleiEnvironmental scienceIntensity (heat transfer)Pressure gradient0105 earth and related environmental sciences
researchProduct

Model emulation to understand the joint effects of ice-nucleating particles and secondary ice production on deep convective anvil cirrus

2021

Abstract. Ice crystal formation in the mixed-phase region of deep convective clouds can affect the properties of climatically important convectively generated anvil clouds. Small ice crystals in the mixed-phase cloud region can be formed by heterogeneous ice nucleation by ice-nucleating particles (INP) and secondary ice production (SIP) by, for example, the Hallett-Mossop process. We quantify the effects of INP number concentration, the temperature dependence of the INP number concentration at mixedphase temperatures, and the Hallett-Mossop splinter production efficiency on the anvil of an idealised deep convective cloud using a Latin hypercube sampling method, which allows optimal coverage…

ConvectionMass fluxAtmospheric ScienceMaterials scienceIce crystalsPhysicsQC1-999AerosolPhysics::GeophysicsChemistryDeposition (aerosol physics)Chemical physicsIce nucleusParticleCirrusQD1-999Physics::Atmospheric and Oceanic PhysicsAtmospheric Chemistry and Physics
researchProduct

Interaction of microphysics and dynamics in a warm conveyor belt simulated with the ICON model

2023

Abstract. The representation of warm conveyor belts (WCBs) in numerical weather prediction (NWP) models is important, as they are responsible for the major precipitation in extratropical cyclones and modulate the large-scale flow evolution. Their cross-isentropic ascent into the upper troposphere is influenced by latent heat release mostly, but not exclusively, from cloud formation whose representation in NWP models is associated with large uncertainties. The diabatic heating additionally modifies the potential vorticity (PV) distribution which influences the circulation. We analyse diabatic heating and associated PV rates from all physics processes, including microphysics, turbulence, conv…

researchProduct

The temperature dependence of ice-nucleating particle concentrations affects the radiative properties of tropical convective cloud systems

2021

Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INPs) on the radiative properties of a complex tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the chosen INP parameterisation. The key distinction between different INP parameterisations is the temperature dependence of ice formation, which alter…

Atmospheric Science010504 meteorology & atmospheric sciencesMicrophysicsWeather and climateTropical Atlantic010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryOrders of magnitude (specific energy)lcsh:QD1-99913. Climate actionRadiative transferParticleEnvironmental scienceClimate modellcsh:Physics0105 earth and related environmental sciences
researchProduct

Automated detection and classification of synoptic-scale fronts from atmospheric data grids

2022

Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic-scale phenomena. In this paper we introduce a deep neural network to detect and classify fronts from multi-level ERA5 reanalysis data. Model training and prediction is evaluated using two different regions covering Europe and North America with data from two weather services. We apply label deformation within our loss function, which removes the need for skeleton operations or other complicated post-processing steps as used in other work, to create the final output. We obtain good prediction scores with a critical success index higher than 66.9 % and an obj…

Meteorology. ClimatologyQC851-999Weather and Climate Dynamics
researchProduct

Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds

2020

Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the Ice in Clouds Experiment – Layer Clouds (ICE-L) campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterizations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature <1 K; spe…

Atmospheric Science010504 meteorology & atmospheric sciencesMicrophysicsMoistureIce crystalsAtmospheric models0208 environmental biotechnology02 engineering and technologyUnified ModelAtmospheric sciences01 natural scienceslcsh:QC1-999020801 environmental engineeringAerosollcsh:Chemistrylcsh:QD1-999Cloud heightEnvironmental sciencePhysics::Atmospheric and Oceanic Physicslcsh:Physics0105 earth and related environmental sciencesOrographic lift
researchProduct

Waves to Weather: Exploring the Limits of Predictability of Weather

2021

AbstractPrediction of weather is a main goal of atmospheric science. Its importance to society is growing continuously due to factors such as vulnerability to natural disasters, the move to renewable energy sources, and the risks of climate change. But prediction is also a major scientific challenge due to the inherently limited predictability of a chaotic atmosphere, and has led to a revolution in forecasting methods as we have moved to probabilistic prediction. These changes provide the motivation for Waves to Weather (W2W), a major national research program in Germany with three main university partners in Munich, Mainz, and Karlsruhe. We are currently in the second 4-yr phase of our pla…

Earth sciencesAtmospheric ScienceMeteorologyddc:550Environmental sciencePredictabilityBulletin of the American Meteorological Society
researchProduct

The nature of ice-nucleating particles affects the radiative properties of tropical convective cloud systems

2020

Abstract. Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INP) on the radiative properties of a complex Tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the bio- and physico-chemical properties of INP. The key distinction between different INPs is the temperature dependence of ice formation, whi…

010504 meteorology & atmospheric sciencesMicrophysicsWeather and climateTropical AtlanticRadiationOrders of magnitude (numbers)Atmospheric sciences01 natural sciencesAerosolCondensed Matter::Materials ScienceRadiative transferEnvironmental scienceClimate modelPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track

2016

A two-type classification of ice clouds (cirrus) is introduced, based on the liquid and ice water content, LWC and IWC, along air parcel backward trajectories from the clouds. In situ cirrus has no LWC along the trajectory segment containing IWC; it forms via nucleation from the gas phase. In contrast, liquid-origin cirrus has both LWC and IWC along their backward trajectories; it forms via lifting from the lower troposphere and freezing of mixed-phase clouds. This classification is applied to 12 years of ERA-Interim ice clouds in the North Atlantic region. Between 400 and 500 hPa more than 50% are liquid-origin cirrus, whereas this frequency decreases strongly with altitude (<10% at 200 hP…

010504 meteorology & atmospheric sciences010501 environmental sciencesFluid parcelAtmospheric sciences01 natural sciencesIce waterGas phaseTroposphereGeophysicsAltitude13. Climate actionGeneral Earth and Planetary SciencesCirrusStorm trackTrajectory (fluid mechanics)Geology0105 earth and related environmental sciencesGeophysical Research Letters
researchProduct