0000000000039872

AUTHOR

Christoph A. Sotriffer

showing 5 related works from this author

How To Design Selective Ligands for Highly Conserved Binding Sites: A Case Study Using N-Myristoyltransferases as a Model System

2019

A model system of two related enzymes with conserved binding sites, namely N-myristoyltransferase from two different organisms, was studied to decipher the driving forces that lead to selective inhibition in such cases. Using a combination of computational and experimental tools, two different selectivity-determining features were identified. For some ligands, a change in side-chain flexibility appears to be responsible for selective inhibition. Remarkably, this was observed for residues orienting their side chains away from the ligands. For other ligands, selectivity is caused by interfering with a water molecule that binds more strongly to the off-target than to the target. On the basis o…

chemistry.chemical_classification0303 health sciencesChemistryStereochemistryModel systemSelective inhibition01 natural sciences0104 chemical sciences010404 medicinal & biomolecular chemistry03 medical and health sciencesEnzymeDrug DiscoverySide chainMolecular MedicineTransferaseMoleculeBinding siteSelectivity030304 developmental biologyJournal of Medicinal Chemistry
researchProduct

Front Cover: Structure‐Activity Relationships of Benzamides and Isoindolines Designed as SARS‐CoV Protease Inhibitors Effective against SARS‐CoV‐2 (2…

2021

PharmacologyFront coverProteaseChemistrymedicine.medical_treatmentSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Organic ChemistryDrug DiscoverymedicineMolecular MedicineGeneral Pharmacology Toxicology and PharmaceuticsBiochemistryVirologyChemMedChem
researchProduct

Structure‐Activity Relationships of Benzamides and Isoindolines Designed as SARS‐CoV Protease Inhibitors Effective against SARS‐CoV‐2

2020

Abstract Inhibition of coronavirus (CoV)‐encoded papain‐like cysteine proteases (PLpro) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure‐activity relationships (SAR) of the noncovalent active‐site directed inhibitor (R)‐5‐amino‐2‐methyl‐N‐(1‐(naphthalen‐1‐yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS‐CoV PLpro. Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS‐CoV‐2 replication in …

Computational chemistryProteases2019-20 coronavirus outbreakCoronavirus disease 2019 (COVID-19)medicine.medical_treatmentSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)virusesStructure-activity relationshipsCysteine Proteinase InhibitorsIsoindolesCrystallography X-RayVirus Replicationmedicine.disease_causeAntiviral Agents01 natural sciencesBiochemistryDrug designStructure-Activity Relationshipchemistry.chemical_compoundCatalytic DomainChlorocebus aethiopsDrug DiscoverymedicineAnimalsddc:610General Pharmacology Toxicology and PharmaceuticsBenzamideVero CellsCoronavirus 3C ProteasesCoronavirusPharmacologyProteaseMolecular StructureFull PaperSARS-CoV-2010405 organic chemistryOrganic ChemistryFull PapersProtease inhibitors0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistrychemistryBiochemistryBenzamidesddc:540Molecular MedicineProtein BindingCysteine
researchProduct

Warhead Reactivity Limits the Speed of Inhibition of the Cysteine Protease Rhodesain.

2021

Viral and parasitic pathogens rely critically on cysteine proteases for host invasion, replication, and infectivity. Their inhibition by synthetic inhibitors, such as vinyl sulfone compounds, has emerged as a promising treatment strategy. However, the individual reaction steps of protease inhibition are not fully understood. Using the trypanosomal cysteine protease rhodesain as a medically relevant target, we design photoinduced electron transfer (PET) fluorescence probes to detect kinetics of binding of reversible and irreversible vinyl sulfones directly in solution. Intriguingly, the irreversible inhibitor, apart from its unlimited residence time in the enzyme, reacts 5 times faster than …

0301 basic medicineProteasesmedicine.medical_treatmentKineticsCysteine Proteinase InhibitorsLigands01 natural sciencesBiochemistryFluorescence03 medical and health sciencesReaction rate constantmedicineReactivity (chemistry)chemistry.chemical_classificationProtease010405 organic chemistryGeneral MedicineCysteine protease0104 chemical sciencesCysteine EndopeptidasesKinetics030104 developmental biologyEnzymechemistryBiophysicsMolecular MedicineCysteineACS chemical biology
researchProduct

Protocol for rational design of covalently interacting inhibitors.

2014

The inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations. While the rational design of non-covalent inhibitors became standard the corresponding design of covalent inhibitors is still in its early stages. Potent covalent inhibitors can be retrieved from large compound libraries by covalent docking approa…

Drug discoveryChemistryRational designHybrid approachCombinatorial chemistryAtomic and Molecular Physics and OpticsEnzymesQM/MMMolecular Docking SimulationNitrophenolsHIV ProteaseDocking (molecular)Covalent bondCatalytic DomainDrug DesignEpoxy CompoundsHumansQuantum TheoryPhysical and Theoretical ChemistryBinding siteEnzyme InhibitorsChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct