0000000000040227

AUTHOR

Yasushi Nara

Structure of longitudinal chromomagnetic fields in high energy collisions

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

research product

Neutron–Proton Dynamics and Pion Production in Heavy-ion Collisions by the AMD+JAM Approach

research product

PREDICTIONS FOR p+PbCOLLISIONS AT $\sqrt{s_{_{\it NN}}} = 5$

Predictions for charged hadron, identified light hadron, quarkonium, photon, jet and gauge bosons in p+Pb collisions at $\sqrt{s_{_{\it NN}}} = 5\, {\rm TeV}$ are compiled and compared. When test run data are available, they are compared to the model predictions.

research product

Studies of high density baryon matter with high intensity heavy-ion beams at J-PARC

Abstract In J-PARC heavy-ion project, we aim at studies of QCD phase structures and hadron properties in high baryon density close to the neutron star core. We have developed a heavy-ion acceleration scheme with a new linac and a new booster with existing two synchrotrons with the goal beam rate of about 10 11 Hz. We have also designed a large acceptance spectrometer based on a toroidal magnet. We have evaluated the spectrometer performance, and demonstrated reconstructing dielectron and dimuon spectra with full detector simulations. Finally, we designed a hypernuclear spectrometer which can utilize the full intensity ion beams.

research product

Structure of chromomagnetic fields in the glasma

The initial stage of a heavy ion collision is dominated by nonperturbatively strong chromoelectric and -magnetic fields. The spatial Wilson loop provides a gauge invariant observable to probe the dynamics of the longitudinal chromomagnetic field. We discuss recent results from a real time lattice calculation of the area-dependence of the expectation value of the spatial Wilson loop. We show that at relatively early times after the collision, a universal scaling as a function of the area emerges at large distances for very different initial conditions, with a nontrivial critical exponent. A similar behavior has earlier been seen in calculations of the gluon transverse momentum spectrum, whic…

research product

Effects of Pauli blocking on pion production in central collisions of neutron-rich nuclei

Pauli blocking is carefully investigated for the processes of $NN \rightarrow N \Delta$ and $\Delta \rightarrow N \pi$ in heavy-ion collisions, aiming at a more precise prediction of the $\pi^-/ \pi^+$ ratio which is an important observable to constrain the high-density symmetry energy. We use the AMD+JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the JAM model to treat processes for $\Delta$ resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blockin…

research product