0000000000040248

AUTHOR

V.j. Kolhinen

Nonlinear corrections to the DGLAP equations in view of the HERA data

The effects of the first nonlinear corrections to the DGLAP evolution equations are studied by using the recent HERA data for the structure function $F_2(x,Q^2)$ of the free proton and the parton distributions from CTEQ5L and CTEQ6L as a baseline. By requiring a good fit to the H1 data, we determine initial parton distributions at $Q_0^2=1.4$ GeV$^2$ for the nonlinear scale evolution. We show that the nonlinear corrections improve the agreement with the $F_2(x,Q^2)$ data in the region of $x\sim 3\cdot 10^{-5}$ and $Q^2\sim 1.5$ GeV$^2$ without paying the price of obtaining a worse agreement at larger values of $x$ and $Q^2$. For the gluon distribution the nonlinear effects are found to play…

research product

D meson enhancement in pp collisions at the LHC due to nonlinear gluon evolution

When nonlinear effects on the gluon evolution are included with constraints from HERA, the gluon distribution in the free proton is enhanced at low momentum fractions, x < 0.01, and low scales, Q^2 < 10 GeV^2, relative to standard, DGLAP-evolved, gluon distributions. Consequently, such gluon distributions can enhance charm production in pp collisions at center of mass energy 14 TeV by up to a factor of five at midrapidity, y \sim 0, and transverse momentum p_T -> 0 in the most optimistic case. We show that most of this enhancement survives hadronization into D mesons. Assuming the same enhancement at leading and next-to-leading order, we show that the D enhancement may be measured …

research product