0000000000040390

AUTHOR

Varsha Srivastava

0000-0003-2275-9168

showing 15 related works from this author

Design and preparation of core-shell structured magnetic graphene oxide@MIL-101(Fe): Photocatalysis under shell to remove diazinon and atrazine pesti…

2020

Abstract A magnetically separable support with core-shell morphology comprising amine-functionalized Fe3O4 wrapped with graphene oxide (AFG) was successfully prepared and used to support MIL-101(Fe). The ternary AFG@MIL-101(Fe) composite was investigated as a photo-Fenton catalyst for the degradation of recalcitrant diazinon (DIZ) and atrazine (ATZ) pesticides. After 105 min visible light irradiation, the AFG@30MIL-101(Fe) photocatalyst achieved 100 ± 1% and 81 ± 1% photocatalytic degradation efficiency for DIZ and ATZ pollutants, respectively. The recorded data indicated superior photocatalytic ability of the nanocomposite as compared to AF@30MIL-101(Fe) and MIL-101(Fe) photocatalysts for …

NanocompositeRenewable Energy Sustainability and the EnvironmentChemistryGraphene020209 energyRadicalOxide02 engineering and technology[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnologylaw.inventionCatalysischemistry.chemical_compoundAdsorption13. Climate actionlawOxidizing agent0202 electrical engineering electronic engineering information engineeringPhotocatalysisGeneral Materials Science0210 nano-technologyComputingMilieux_MISCELLANEOUSNuclear chemistry
researchProduct

Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity.

2021

Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF…

Environmental EngineeringsynthesisHealth Toxicology and MutagenesisIron0208 environmental biotechnologyGroundwater remediationrauta02 engineering and technology010501 environmental sciencesHeterogeneous catalysis01 natural sciencesCommercializationrakenne (ominaisuudet)Water PurificationEnvironmental Chemistrystructurepolymeeritiron-based metal-organic frameworkEcosystemMetal-Organic Frameworks0105 earth and related environmental sciencesPollutantkemiallinen synteesifenton degradationvedenpuhdistusPublic Health Environmental and Occupational HealthWaterGeneral MedicineGeneral Chemistrywater treatmentkompleksiyhdisteetPollution6. Clean water020801 environmental engineering13. Climate actionadsorptionPhotocatalysisEnvironmental scienceMetal-organic frameworkWater treatmentWater qualityBiochemical engineeringadsorptioChemosphere
researchProduct

Heterogeneous fenton oxidation using magnesium ferrite nanoparticles for ibuprofen removal from wastewater: optimization and kinetics studies

2020

In this study, the catalytic properties of Fenton-like catalyst based on magnesium ferrite nanoparticles for IBP degradation were examined. Structural and morphological studies showed the low crystallinity and mesoporous structure for the catalyst obtained via a glycine-nitrate method. The influences of catalyst dosage, oxidant concentration, and solution pH on the pollutant degradation were investigated. The pseudo-first-order model describes kinetic data, and under optimal condition (catalyst dose of 0.5 g L-1, H2O2 concentration of 20.0 mM, and pH of 8.0), apparent rate constant reached 0.091 min-1. It was shown that Fenton reaction was mainly induced by iron atoms on the catalyst surfac…

inorganic chemicalshapetusMaterials scienceArticle SubjectKineticsNanoparticlejätevesi02 engineering and technology010501 environmental sciences01 natural sciencesCatalysisCrystallinitykatalyytitReaction rate constantT1-995General Materials ScienceTechnology (General)jäteveden käsittely0105 earth and related environmental sciencesvedenpuhdistusmagnesium ferrite ; ibuprofen removal ; fenton oxidationlääkeaineet021001 nanoscience & nanotechnologyibuprofeeniWastewaterChemical engineeringnanohiukkasetLeaching (metallurgy)0210 nano-technologyMesoporous material
researchProduct

Effect of Mg2+ ions on competitive metal ions adsorption/desorption on magnesium ferrite: Mechanism, reusability and stability studies

2021

Abstract The adsorption behavior of magnesium ferrite in single- and multicomponent metal ions solutions in the presence of Mg2+ ions were studied. A dramatic decrease in the adsorption capacity of magnesium ferrite towards Mn2+, Co2+, and Ni2+ ions for comparison study of single- and multicomponent solutions was established. The affinity of the sorbent in accordance with the maximum sorption capacities increases in the following order Cu2+ > Co2+ > Ni2+ > Mn2+. High efficiency of magnesium ferrite regeneration (~100%) with aqueous solutions of magnesium chloride in the concentration range of 0.001–0.1 M was shown. The low degree of toxic metal ions desorption combined with XRD, IR spectros…

inorganic chemicals021110 strategic defence & security studiesEnvironmental EngineeringAqueous solutionMagnesiumHealth Toxicology and MutagenesisMetal ions in aqueous solutionInorganic chemistry0211 other engineering and technologieschemistry.chemical_elementSorption02 engineering and technology010501 environmental sciences01 natural sciencesPollutionIonAdsorptionchemistryDesorptionEnvironmental ChemistryLeaching (metallurgy)Waste Management and Disposal0105 earth and related environmental sciencesJournal of Hazardous Materials
researchProduct

Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr–Al double oxides

2020

The main objective of the present paper comprises the investigation of biodiesel production from low-cost feedstock such as lard oil and waste cooking oil (WCO) using Sr-Al double oxides. Nanocatalyst was characterised FTIR, XRD, SEM, TEM, BET and XPS. The Sr:Al with 3:1 molar ratio showed the best catalytic activity in the conversion of both oils to fatty acid methyl ester. The effect of acetone and tetrahydrofuran (THF) as a co-solvent for transesterification were compared and the best result was obtained with 5 % THF. The mutual effect of the nanocatalyst and co-solvent on biodiesel production was investigated. The characterisation of biodiesel synthesised from lard oil and WCO was perfo…

kasviöljyt020209 energy02 engineering and technologyCatalysischemistry.chemical_compoundkatalyytit0202 electrical engineering electronic engineering information engineeringAcetone0601 history and archaeologySr–Al double oxidesFatty acid methyl esterBiodieselLard oil060102 archaeologyeläinrasvatRenewable Energy Sustainability and the Environmentfood and beveragesEN 1421406 humanities and the artsTransesterificationWaste cooking oilTransesterificationchemistryjätteiden hyötykäyttöBiodiesel productionnanohiukkasetMethanolBiodieselNuclear chemistry
researchProduct

Novel Functionality of Lithium-Impregnated Titania as Nanocatalyst

2019

The present work incorporates the synthesis of a multifunctional catalyst for the transesterification of waste cooking oil (WCO) to biodiesel and recovery of rare earth elements (REEs). For this purpose, TiO2 nanoparticles and TiO2 doped with lithium ions were prepared. The influence of lithium ions on the catalytic performance of TiO2 was attained by impregnation of the different molar ratios of lithium hydroxide to bare TiO2. Then each catalyst was screened for catalytic conversion of WCO to fatty acid methyl ester (FAME) and also for REEs recovery. All synthesized materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Transmission electron microsc…

Materials sciencekasviöljytScanning electron microscope020209 energychemistry.chemical_elementbiodieselrare earth elements02 engineering and technologylcsh:Chemical technologyCatalysisLithium hydroxidewaste cooking oilNanomaterialsCatalysislcsh:Chemistrychemistry.chemical_compoundkatalyytit0202 electrical engineering electronic engineering information engineeringTiO2lcsh:TP1-1185Physical and Theoretical ChemistryFatty acid methyl esternanocatalystBiodieselTransesterificationharvinaiset maametallit021001 nanoscience & nanotechnologylitiumchemistrylcsh:QD1-999nanohiukkasetLithiumtitaanidioksidi0210 nano-technologyTiO<sub>2</sub>Nuclear chemistryCatalysts
researchProduct

Effect of lithium ions on the catalytic efficiency of calcium oxide as a nanocatalyst for the transesterification of lard oil

2019

The present work encompasses the effect of Li+ ions on CaO nanoparticles for the transesterification of lard oil. The modification of CaO nanoparticles was achieved by the impregnation of different molar ratios of lithium hydroxide. Later, each catalyst was screened for the catalytic conversion of lard oil to a fatty acid methyl ester (FAME). The nanocatalyst CaO–0.5LiOH (1 : 0.5 molar ratio) showed the best conversion rate for FAME. The synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) analysis, and Hammett indicato…

esterit020209 energyEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologykalkki010501 environmental sciences01 natural sciencesLithium hydroxideCatalysischemistry.chemical_compoundkatalyytit0202 electrical engineering electronic engineering information engineeringFourier transform infrared spectroscopybiopolttoaineetFatty acid methyl ester0105 earth and related environmental scienceseläinrasvatRenewable Energy Sustainability and the EnvironmentTransesterificationFuel TechnologylitiumchemistryYield (chemistry)Proton NMRnanohiukkasetLithiumNuclear chemistrySustainable Energy &amp; Fuels
researchProduct

Preparation of tungstophosphoric acid/cerium-doped NH2-UiO-66 Z-scheme photocatalyst: a new candidate for green photo-oxidation of dibenzothiophene a…

2021

International audience; The goal of this study was to introduce an effective visible-light induced photocatalytic system with a good ability for photocatalytic oxidative desulfurization (PODS) and denitrogenation (PODN) using molecular oxygen (O2) as an oxidant. In this regard, tungestophosphoric acid (PW12) was supported onto cerium-doped NH2-UiO-66 (PW12/Ce-NUiO-66) and employed for the photo-oxidation of dibenzothiophene (DBT) and quinoline (Qu). Herein, using cerium (Ce) as a “mediator” facilitated the separation of charge carriers, while NH2-UiO-66 remarkably enhanced the surface area with plentiful adsorption sites and shifted the adsorption edge of PW12to the visible region. The sum …

pore volumeAdsorption edgesLight02 engineering and technology01 natural scienceschemistry.chemical_compound[SPI]Engineering Sciences [physics]quinolineVisible-light irradiationMaterials Chemistryoxidizing agentOxidative desulfurizationirradiationQuinolineCerium021001 nanoscience & nanotechnologyOxidantsFlue-gas desulfurizationCeriumDibenzothiophenePhotocatalysisCharge carrierCarrier mobility0210 nano-technologychemistry.chemical_element010402 general chemistryMaximum EfficiencyCatalysisArticleuraniumAdsorptionphosphotungstic acidpore size distributiondibenzothiophene derivativegreen chemistryphotooxidationDopingdesulfurizationGeneral Chemistrysurface areaPhotocatalytic systems0104 chemical sciencesVisible light inducedDibenzothiophenesTungstophosphoric acidMolecular oxygenPhotocatalytic activitychemistryadsorptiondesorptionoxygenphotocatalysisNuclear chemistrycatalyst
researchProduct

Application of Potassium Ion Impregnated Titanium Dioxide as Nanocatalyst for Transesterification of Linseed Oil

2018

The current work comprises the investigation of biodiesel production from linseed oil using TiO2 and a potassium L-tartrate monobasic (C4H5KO6)-modified TiO2 nanocatalyst. Different amounts of C4H5KO6 were considered for TiO2 modification. The nanocatalyst TiO2–0.5C4H5KO6 (1:0.5 molar ratio) showed the best conversion rate for biodiesel production. The nanocatalyst was characterized by FTIR, XRD, TEM, BET, and XPS, and the Hammett indicator–benzenecarboxylic acid titration method was used for basicity measurement. The biodiesel was characterized by GC-MS and 1H and 13C NMR. Furthermore, the optimum reaction parameters for transesterification reaction were analyzed, and the yield was determi…

food.ingredientkasviöljyt020209 energyGeneral Chemical EngineeringPotassiumjalostusnanomateriaalitEnergy Engineering and Power Technologychemistry.chemical_elementbiodiesel02 engineering and technologychemistry.chemical_compoundfood020401 chemical engineeringLinseed oil0202 electrical engineering electronic engineering information engineering0204 chemical engineeringta116ta215nanocatalystMonobasic acidTransesterificationlinseed oiltransesterificationFuel TechnologychemistryBiodiesel productionkatalyysiTitanium dioxideNuclear chemistry
researchProduct

Sorption and mechanism studies of Cu2+, Sr2+ and Pb2+ ions on mesoporous aluminosilicates/zeolite composite sorbents

2020

Abstract The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions were investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared m…

LangmuirEnvironmental EngineeringAqueous solutionIon exchangeChemistryMetal ions in aqueous solution02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAdsorptionAluminosilicate0210 nano-technologyZeoliteWater Science and TechnologyNuclear chemistryBET theoryWater Science and Technology
researchProduct

Nano-magnetic potassium impregnated ceria as catalyst for the biodiesel production

2019

Abstract The main objective of this work comprises the investigation of biodiesel production from rapeseed oil using potassium impregnated Fe3O4-CeO2 nanocatalyst. The various concentration of potassium impregnated Fe3O4-CeO2 was screened for catalytic conversion of rapeseed oil to triglyceride methyl ester. The 25 wt % potassium impregnated Fe3O4-CeO2 nanocatalyst showed best biodiesel production. Nanocatalyst was characterized by FTIR, XRD, SEM, TEM, BET and Hammett indicator for basicity test. The characterization of biodiesel was performed with GC-MS, 1H and 13C NMR. Moreover, the optimum reaction parameters such as catalyst amount (wt %), oil to methanol ratio, reaction time and reacti…

Acid valuekasviöljyt020209 energyPotassiumchemistry.chemical_elementbiodiesel02 engineering and technologyrapeseed oilCatalysischemistry.chemical_compoundkatalyytit0202 electrical engineering electronic engineering information engineering0601 history and archaeologyta116ta215ta218Biodiesel060102 archaeologyRenewable Energy Sustainability and the Environment06 humanities and the artsTransesterificationtransesterificationchemistryYield (chemistry)Biodiesel productionoksiditnanohiukkasetMethanolFe3O4-CeO2 nanocatalystrapsiöljyNuclear chemistryRenewable Energy
researchProduct

DUAL APPLICATION OF DIVALENT ION-ANCHORED CATALYST: BIODIESEL SYNTHESIS AND PHOTOCATALYTIC DEGRADATION OF CARBAMAZEPINE

2019

chemistry.chemical_classificationBiodieselfood.ingredientfoodchemistryLinseed oilChemical engineeringGeneral MedicineTransesterificationPhotocatalytic degradationDivalentCatalysisIonCatalysis in Green Chemistry and Engineering
researchProduct

Effect of Mg2+ ions on competitive metal ions adsorption/desorption on magnesium ferrite : mechanism, reusability and stability studies

2021

The adsorption behavior of magnesium ferrite in single- and multicomponent metal ions solutions in the presence of Mg2+ ions were studied. A dramatic decrease in the adsorption capacity of magnesium ferrite towards Mn2+, Co2+, and Ni2+ ions for comparison study of single- and multicomponent solutions was established. The affinity of the sorbent in accordance with the maximum sorption capacities increases in the following order Cu2+ > Co2+ > Ni2+ > Mn2+. High efficiency of magnesium ferrite regeneration (~100%) with aqueous solutions of magnesium chloride in the concentration range of 0.001-0.1 M was shown. The low degree of toxic metal ions desorption combined with XRD, IR spectroscopy, and…

inorganic chemicalsraskasmetallitkemialliset yhdisteetionitregenerationmechanism adsorptionmagnesium ferriterautastabilitymagnesiumadsorptiocompetitive adsorption
researchProduct

Protein recovery as a resource from waste specifically via membrane technology : from waste to wonder

2021

Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein re…

potato processing wastemembrane foulingmicroalgaejätevesikalvotekniikka (erotusmenetelmät)talteenottopurple phototrophic bacteriaelintarviketeollisuusbiomassa (teollisuus)mikrobitproteiinitmesoporous silica nanoparticlesadsorptioalfalfa processing wastedairy waste proteinwastewaters
researchProduct

Sorption and mechanism studies of Cu2+, Sr2+ and Pb2+ ions on mesoporous aluminosilicates/zeolite composite sorbents

2020

The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions was investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared materials f…

radioactive ionraskasmetallitzeoliititmesoporous aluminosilicatesilikaatitadsorptiontextural propoertyheavy metalzeolitevedenkäsittelyadsorptiokomposiitit
researchProduct