6533b838fe1ef96bd12a513a
RESEARCH PRODUCT
Novel Functionality of Lithium-Impregnated Titania as Nanocatalyst
Varsha SrivastavaEsa HaapaniemiIndu AmbatMika Sillanpääsubject
Materials sciencekasviöljytScanning electron microscope020209 energychemistry.chemical_elementbiodieselrare earth elements02 engineering and technologylcsh:Chemical technologyCatalysisLithium hydroxidewaste cooking oilNanomaterialsCatalysislcsh:Chemistrychemistry.chemical_compoundkatalyytit0202 electrical engineering electronic engineering information engineeringTiO2lcsh:TP1-1185Physical and Theoretical ChemistryFatty acid methyl esternanocatalystBiodieselTransesterificationharvinaiset maametallit021001 nanoscience & nanotechnologylitiumchemistrylcsh:QD1-999nanohiukkasetLithiumtitaanidioksidi0210 nano-technologyTiO<sub>2</sub>Nuclear chemistrydescription
The present work incorporates the synthesis of a multifunctional catalyst for the transesterification of waste cooking oil (WCO) to biodiesel and recovery of rare earth elements (REEs). For this purpose, TiO2 nanoparticles and TiO2 doped with lithium ions were prepared. The influence of lithium ions on the catalytic performance of TiO2 was attained by impregnation of the different molar ratios of lithium hydroxide to bare TiO2. Then each catalyst was screened for catalytic conversion of WCO to fatty acid methyl ester (FAME) and also for REEs recovery. All synthesized materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Brunauer&ndash
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-09 | Catalysts |