0000000000040465
AUTHOR
Mikael Lindström
Norm, essential norm and weak compactness of weighted composition operators between dual Banach spaces of analytic functions
Abstract In this paper we estimate the norm and the essential norm of weighted composition operators from a large class of – non-necessarily reflexive – Banach spaces of analytic functions on the open unit disk into weighted type Banach spaces of analytic functions and Bloch type spaces. We also show the equivalence of compactness and weak compactness of weighted composition operators from these weighted type spaces into a class of Banach spaces of analytic functions, that includes a large family of conformally invariant spaces like BMOA and analytic Besov spaces.
Fredholm composition operators on algebras of analytic functions on Banach spaces
AbstractWe prove that Fredholm composition operators acting on the uniform algebra H∞(BE) of bounded analytic functions on the open unit ball of a complex Banach space E with the approximation property are invertible and arise from analytic automorphisms of the ball.
Königs eigenfunction for composition operators on Bloch and H∞ type spaces
Abstract We discuss when the Konigs eigenfunction associated with a non-automorphic selfmap of the complex unit disc that fixes the origin belongs to Banach spaces of holomorphic functions of Bloch and H ∞ type. In the latter case, our characterization answers a question of P. Bourdon. Some spectral properties of composition operators on H ∞ for unbounded Konigs eigenfunction are obtained.
Weakly compact composition operators between algebras of bounded analytic functions
Interpolating sequences on uniform algebras
Abstract We consider the problem of whether a given interpolating sequence for a uniform algebra yields linear interpolation. A positive answer is obtained when we deal with dual uniform algebras. Further we prove that if the Carleson generalized condition is sufficient for a sequence to be interpolating on the algebra of bounded analytic functions on the unit ball of c 0 , then it is sufficient for any dual uniform algebra.
Gleason Parts and Weakly Compact Homomorphismsbetween Uniform Banach Algebras
If points in nontrivial Gleason parts of a uniform Banach algebra have unique representing measures, then the weak and the norm topology coincide on the spectrum. We derive from this several consequences about weakly compact homomorphisms and discuss the case of other uniform Banach algebras arising in complex infinite dimensional analysis.
Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions
AbstractWe determine the spectra of composition operators acting on weighted Banach spaces Hv∞ of analytic functions on the unit disc defined for a radial weight v, when the symbol of the operator has a fixed point in the open unit disc. We also investigate in this case the growth rate of the Koenigs eigenfunction and its relation with the essential spectral radius of the composition operator.
Composition operators on uniform algebras, essential norms, and hyperbolically bounded sets
Let A be a uniform algebra, and let o be a self-map of the spectrum M A of A that induces a composition operator C o on A. The object of this paper is to relate the notion of "hyperbolic boundedness" introduced by the authors in 2004 to the essential spectrum of C o . It is shown that the essential spectral radius of C o , is strictly less than 1 if and only if the image of M A under some iterate o n of o is hyperbolically bounded. The set of composition operators is partitioned into "hyperbolic vicinities" that are clopen with respect to the essential operator norm. This partition is related to the analogous partition with respect to the uniform operator norm.
Essential norm estimates for composition operators on BMOA
Abstract We provide two function-theoretic estimates for the essential norm of a composition operator C φ acting on the space BMOA; one in terms of the n-th power φ n of the symbol φ and one which involves the Nevanlinna counting function. We also show that if the symbol φ is univalent, then the essential norm of C φ is comparable to its essential norm on the Bloch space.
Connected components in the space of composition operators onH∞ functions of many variables
LetE be a complex Banach space with open unit ballBe. The structure of the space of composition operators on the Banach algebra H∞, of bounded analytic functions onBe with the uniform topology, is studied. We prove that the composition operators arising from mappings whose range lies strictly insideBe form a path connected component. WhenE is a Hilbert space or aCo(X)- space, the path connected components are shown to be the open balls of radius 2.
WEAKLY COMPACT HOMOMORPHISMS BETWEEN SMALL ALGEBRAS OF ANALYTIC FUNCTIONS
The weak compactness of the composition operator CΦ(f) = f ○ Φ acting on the uniform algebra of analytic uniformly continuous functions on the unit ball of a Banach space with the approximation property is characterized in terms of Φ. The relationship between weak compactness and compactness of these composition operators and general homomorphisms is also discussed.
Factorization of homomorphisms through H∞(D)
AbstractWeakly compact homomorphisms between (URM) algebras with connected maximal ideal space are shown to factor through H∞(D) by means of composition operators and to be strongly nuclear. The spectrum of such homomorphisms is also described. Strongly nuclear composition operators between algebras of bounded analytic functions are characterized. The path connected components of the space of endomorphisms on H∞(D) in the uniform operator topology are determined.