0000000000040469

AUTHOR

O. A. Chichigina

A Simple Noise Model with Memory for Biological Systems

A noise source model, consisting of a pulse sequence at random times with memory, is presented. By varying the memory we can obtain variable randomness of the stochastic process. The delay time between pulses, i. e. the noise memory, produces different kinds of correlated noise ranging from white noise, without delay, to quasi-periodical process, with delay close to the average period of the pulses. The spectral density is calculated. This type of noise could be useful to describe physical and biological systems where some delay is present. In particular it could be useful in population dynamics. A simple dynamical model for epidemiological infection with this noise source is presented. We …

research product

The distribution of velocities in an ensemble of accelerated particles on a surface

An ensemble of particles diffusing with acceleration on a surface is considered as a 2D billiard system. The process of the finite-time diffusion of particles is studied using the balance equation. The probability distribution functions of the velocity and lifetime of particles are obtained analytically and by means of numerical simulations. A thermodynamic interpretation of the process is discussed. The effective temperature and entropy obey the relationship for an ideal gas.

research product

Role of sub- and super-Poisson noise sources in population dynamics

In this paper we present a study on pulse noise sources characterized by sub- and super-Poisson statistics. We make a comparison with their uncorrelated counterpart. i.e. pulse noise with Poisson statistics, while showing that the correlation properties of sub- and super-Poisson noise sources can be efficiently applied to population dynamics. Specifically, we consider a termite population, described by a Langevin equation in the presence of a pulse noise source, and we study its dynamics and stability properties for two models. The first one describes a population of several colonies in a new territory with adverse environmental conditions. The second one considers the development of a sing…

research product

Stochastic model for the epitaxial growth of two-dimensional islands in the submonolayer regime

The diffusion-based growth of islands composed of clusters of metal atoms on a substrate is considered in the aggregation regime. A stochastic approach is proposed to describe the dynamics of island growth based on a Langevin equation with multiplicative noise. The distribution of island sizes, obtained as a solution of the corresponding Fokker-Planck equation, is derived. The time-dependence of island growth on its fractal dimension is analysed. The effect of mobility of the small islands on the growth of large islands is considered. Numerical simulations are in a good agreement with theoretical results.

research product

Strongly super-Poisson statistics replaced by a wide-pulse Poisson process: The billiard random generator

Abstract In this paper we present a study on random processes consisting of delta pulses characterized by strongly super-Poisson statistics and calculate its spectral density. We suggest a method for replacing a strongly super-Poisson process with a wide-pulse Poisson process, while demonstrating that these two processes can be set in such a way to have similar spectral densities, the same mean values, and the same correlation times. We also present a billiard system that can be used to generate random pulse noise of arbitrary statistical properties. The particle dynamics is considered in terms of delta and wide pulses simultaneously. The results of numerical experiments with the billiard s…

research product

Stability under influence of noise with regulated periodicity

A very simple stochastic differential equation with quasi‐periodical multiplicative noise is investigated analytically. For fixed noise intensity the system can be stable at high noise periodicity and unstable at low noise periodicity.

research product

Predator population depending on lemming cycles

In this paper, a Langevin equation for predator population with multiplicative correlated noise is analyzed. The noise source, which is a nonnegative random pulse noise with regulated periodicity, corresponds to the prey population cycling. The increase of periodicity of noise affects the average predator density at the stationary state.

research product

Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady s…

research product

Stochastic acceleration in generalized squared Bessel processes

We analyze the time behavior of generalized squared Bessel processes, which are useful for modeling the relevant scales of stochastic acceleration problems. These nonstationary stochastic processes obey a Langevin equation with a non-Gaussian multiplicative noise. We obtain the long-time asymptotic behavior of the probability density function for non-Gaussian white and colored noise sources. We find that the functional form of the probability density functions is independent of the statistics of the noise source considered. Theoretical results are in good agreement with those obtained by numerical simulations of the Langevin equation with pulse noise sources.

research product

Stability in a System subject to Noise with Regulated Periodicity

The stability of a simple dynamical system subject to multiplicative one-side pulse noise with hidden periodicity is investigated both analytically and numerically. The stability analysis is based on the exact result for the characteristic functional of the renewal pulse process. The influence of the memory effects on the stability condition is analyzed for two cases: (i) the dead-time-distorted poissonian process, and (ii) the renewal process with Pareto distribution. We show that, for fixed noise intensity, the system can be stable when the noise is characterized by high periodicity and unstable at low periodicity.

research product