0000000000040570
AUTHOR
Thomas Masseron
The Gaia-ESO Survey: The origin and evolution of s-process elements
Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…
Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra
This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…
The Gaia-ESO Survey: impact of extra mixing on C and N abundances of giant stars
The GES survey using FLAMES at the VLT has obtained high-resolution UVES spectra for a large number of giant stars, allowing a determination of the abundances of the key chemical elements C and N at their surface. The surface abundances of these chemical species are well-known to change in stars during their evolution on the red giant branch after the first dredge-up episod, as a result of extra-mixing phenomena. We investigate the effects of thermohaline mixing on C and N abundances using the first comparison between the GES [C/N] determinations with simulations of the observed fields using a model of stellar population synthesis. We explore the effects of thermohaline mixing on the chemic…
The Gaia-ESO Survey: matching chemodynamical simulations to observations of the Milky Way
The typical methodology for comparing simulated galaxies with observational surveys is usually to apply a spatial selection to the simulation to mimic the region of interest covered by a comparable observational survey sample. In this work, we compare this approach with a more sophisticated post-processing in which the observational uncertainties and selection effects (photometric, surface gravity and effective temperature) are taken into account. We compare a 'solar neighbourhood analogue' region in a model MilkyWay-like galaxy simulated with RAMSES-CH with fourth release Gaia-ESO survey data. We find that a simple spatial cut alone is insufficient and that the observational uncertainties …
The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon
Aims: One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to γ Velorum (γ Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods: We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of γ Vel and Cha I among the UVES and GIRAFFE spectroscopic obser…
The Gaia-ESO survey: Metallicity of the chamaeleon i star-forming region
Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate member…