0000000000040603

AUTHOR

C. C. Worley

showing 6 related works from this author

The Gaia-ESO Survey: The origin and evolution of s-process elements

2018

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…

astro-ph.GAMetallicityFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: diskAstronomi astrofysik och kosmologiAbundance (ecology)QB4600103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesStarsAbundances [Galaxy][SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsDisk [Galaxy]s-processOpen cluster
researchProduct

Gaia-ESO Survey: Gas dynamics in the Carina nebula through optical emission lines

2016

Aims. We present observations from the Gaia-ESO Survey in the lines of Hα, [N II], [S II], and He I of nebular emission in the central part of the Carina nebula. Methods. We investigate the properties of the two already known kinematic components (approaching and receding), which account for the bulk of emission. Moreover, we investigate the features of the much less known low-intensity high-velocity (absolute RV >50 km s) gas emission. Results. We show that gas giving rise to Hα and He I emission is dynamically well correlated with but not identical to gas seen through forbidden-line emission. Gas temperatures are derived from line-width ratios, and densities from [S II] doublet ratios. Th…

HII regionsastro-ph.SRastro-ph.GAAstrophysics::High Energy Astrophysical PhenomenaShell (structure)FluxFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesISM: individual objects: Carina nebula; ISM: general ; HII regionsIonization0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsHII regionEmission spectrum010303 astronomy & astrophysicsISM: individual objects: Carina nebulaQCSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBISM: generalAstronomía y AstrofísicaPhysicsNebulageneral [ISM]010308 nuclear & particles physicsindividual objects: Carina nebula [ISM]Astronomy and AstrophysicsGas dynamicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesDust laneCore (optical fiber)Astrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)HII regions; ISM: general; ISM: individual objects: Carina nebula; Astronomy and Astrophysics; Space and Planetary Science
researchProduct

Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra

2015

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…

Accuracy and precisionPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequenceSurveysfundamental parameters [Stars]Astronomical spectroscopysurveysAngular diameterpre-main sequence [Stars]Astrophysics::Solar and Stellar AstrophysicsSurveydata analysis [Methods]educationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicseducation.field_of_studygeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astronomy and AstrophysicsStars: fundamental parameterAstronomy and AstrophysicEffective temperatureopen clusters and associations: generalSurface gravitymethods: data analysisAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsMethods: data analysis; Open clusters and associations: general; Stars: fundamental parameters; Stars: pre-main sequence; Surveys; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary Science[SDU]Sciences of the Universe [physics]open clusters and associations: general; surveys ; methods: data analysisAstrophysics::Earth and Planetary Astrophysicsstars: fundamental parametersMethods: data analysi
researchProduct

The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon

2015

Aims: One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to γ Velorum (γ Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods: We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of γ Vel and Cha I among the UVES and GIRAFFE spectroscopic obser…

Astrofísicastars: chromospheresAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRotationStars: chromosphereOpen clusters and associations: individual:γVelorumstars: low-massStars: low-maAstrophysics::Solar and Stellar AstrophysicsOpen clusters and associations: individual: Chamaeleon Iopen clusters and associations: individual: γ VelorumQCAstrophysics::Galaxy AstrophysicsQBLine (formation)PhysicsAccretion (meteorology)stars: chromospheres ; stars: low-mass; open clusters and associations: individual: γ VelorumDiagramStars: rotationSpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicStarsDistribution (mathematics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen clusters and associations: individual: Chamaeleon I; Open clusters and associations: individual:γVelorum; Stars: chromospheres; Stars: low-mass; Stars: pre-main sequence; Stars: rotation
researchProduct

Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula

2017

Aims: We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. Methods: In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. Results: We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their l…

astro-ph.SROpen clusters and associations: individual: Carina nebulaastro-ph.GAExtinction (astronomy)PopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOpen clusters and associations: individual: Trumpler 1401 natural sciencesindividual: Trumpler 16 [Open clusters and associations]Open clusters and associations: individual: Trumpler 16individual: Trumpler 14 [Open clusters and associations]Stars: early-typeearly-type [Stars]pre-main sequence [Stars]QB4600103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)O-type starLine (formation)[PHYS]Physics [physics]PhysicsNebulaeducation.field_of_studyOpen clusters and associations: Individual: Carina nebula; Open clusters and associations: Individual: Trumpler 14; Open clusters and associations: Individual: Trumpler 16; Stars: Early-type; Stars: Pre-main sequence; Astronomy and Astrophysics; Space and Planetary Science010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesStarsStar clusterAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Stars: pre-main sequenceAstrophysics::Earth and Planetary Astrophysicsindividual: Carina nebula [Open clusters and associations][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon i

2017

Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young (~2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion …

astro-ph.SRStellar populationopen clustersand associations: individual: Chamaeleon IIndividual: Chamaeleon I [Open clusters and associations]Open clusters and associations: Individual: Chamaeleon I; Stars: Kinematics and dynamics; Stars: Pre-main sequence; Techniques: Spectroscopicastro-ph.GAstars: kinematics and dynamicsFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequence01 natural sciencesVirial theoremKinematics and dynamics [Stars]Stars: Kinematics and dynamic0103 physical sciencesCluster (physics)Mass segregationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsStellar evolutionQCSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBPhysicsPre-main sequence [Stars]open clusters and associations: individual: Chamaeleon I010308 nuclear & particles physicsVelocity dispersionAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxies[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]stars: kinematics and dynamics; stars: pre-main sequence; open clustersand associations: individual: Chamaeleon I; techniques: spectroscopicStar clusterAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsSpectroscopic [Techniques]Equivalent widthtechniques: spectroscopicQB799
researchProduct