0000000000040622
AUTHOR
José R. Peláez
Resonances, chiral symmetry, coupled channel unitarity and effective Lagrangians
By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. We report on an update of these results examining their possible relevance for meson spectroscopy.
η→π0γγdecay within a chiral unitary approach revisited
In view of the recent experimental developments in η→π^(0)γ γ decay, and the fact that the Particle Data Group in the online edition of 2007 reports sizable changes of the radiative decay widths of vector mesons used as input in the theoretical calculations of E. Oset, J. R. Pelaez, and L. Roca [Phys. Rev. D 67, 073013 (2003)], a reevaluation of the decay width of the in this channel has been done, reducing its uncertainty by almost a factor of 2. The new input of the Particle Data Group is used, and invariant mass distributions and total widths are compared with the most recent results from the AGS and MAMI experiments, and preliminary ones of KLOE. The agreement of the theory with the AGS…
Recent progress on the chiral unitary approach to meson meson and meson baryon interactions
We report on recent progress on the chiral unitary approach, analogous to the effective range expansion in Quantum Mechanics, which is shown to have a much larger convergence radius than ordinary chiral perturbation theory, allowing one to reproduce data for meson meson interaction up to 1.2 GeV. Applications to physical processes so far unsuited for a standard chiral perturbative approach are presented. Results for the extension of these ideas to the meson baryon sector are discussed, together with applications to kaons in a nuclear medium and $K^-$ atoms.
A non-perturbative chiral approach for meson-meson interactions
A non-perturbative method which combines constraints from chiral symmetry breaking and coupled channel unitarity is used to describe meson-meson interactions up to \sqrt{s}\lesssim 1.2 GeV, extending in this way the range of applicability of the information contained in Chiral Perturbation Theory (\chi PT), since this perturbative series is typically restricted to \sqrt{s}\lesssim 500 MeV. The approach uses the O(p^2) and O(p^4) \chiPT Lagrangians. The seven free parameters resulting from the O(p^4) Lagrangian are fitted to the experimental data. The approach makes use of the expansion of T^{-1} instead of the amplitude itself as done in \chiPT. The former expansion is suggested by analogy …
Two-meson cloud contribution to the baryon antidecuplet self-energy
We study the self-energy of the SU(3) antidecuplet coming from two-meson virtual clouds. Assuming that the exotic Theta+ belongs to an antidecuplet representation with N(1710) as nucleon partner, we derive effective Lagrangians that describe the decay of N(1710) into N pi pi with two pions in s- or p-wave. It is found that the self-energies for all members of the antidecuplet are attractive, and the larger strangeness particle is more bound. From two-meson cloud, we obtain about 20 % of the empirical mass splitting between states with different strangeness.
Two-meson cloud contribution to the baryon antidecuplet binding
We study the two-meson virtual cloud contribution to the self-energy of the SU(3) antidecuplet, to which the Theta+ pentaquark is assumed to belong. This is motivated by the large branching ratio of the N(1710) decay into two pions and one nucleon. We derive effective Lagrangians that describe the N(1710) decay into N-pi-pi with two pions in s or p wave. We obtain increased binding for all members of the antidecuplet and a contribution to the mass splitting between states with different strangeness which is at least 20 % of the empirical one. We also provide predictions for three-body decays of the pentaquark antidecuplet.
Nonperturbative approach to effective chiral Lagrangians and meson interactions
We develop a coupled channel unitary approach describing the behavior at higher energies of systems whose low-energy dynamics is given by effective O(p^2) and O(p^4) chiral Lagrangians. Our free parameters are those of the O(p^4) Lagrangian. When applied to the meson-meson interaction, it yields a remarkable agreement with data up to sqrt{s}=1.2 GeV, dynamically generating the sigma, f_0, a_0,rho and K^* resonances. Further applications are also proposed.
Improved unitarized heavy baryon chiral perturbation theory for πN scattering to fourth order
We extend our previous analysis of the unitarized pion-nucleon scattering amplitude including up to fourth order terms in heavy baryon chiral perturbation theory. We pay special attention to the stability of the generated Delta(1232) resonance, the convergence problems, and the power counting of the chiral parameters.
Photoproduction of meson and baryon resonances in a chiral unitary approach
By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. The meson baryon sector can also be tackled along similar lines. We report on an update of these results showing some examples of photon induced reactions where the techniques have been recently applied.
Meson-meson interactions in a nonperturbative chiral approach
A non-perturbative method which combines constraints from chiral symmetry breaking and coupled channel unitarity is used to describe the meson-meson interaction up to about 1.2 GeV. The approach uses the O(p^2) and O(p^4) chiral Lagrangians. The seven free parameters of the O(p^4) Lagrangian are fitted to the data. The results are in good agreement with a vast amount of experimental analyses. The amplitudes develop poles in the complex plane corresponding to the f0, a0, rho, K*, phi, sigma and kappa resonances; the latter two, very broad. The total and partial decay widths of the resonances are also well reproduced. Further extensions and applications of this chiral non-perturbative scheme …
SU(3) Chiral approach to meson and baryon dynamics
We report on recent progress on the chiral unitary approach, which is shown to have a much larger convergence radius than ordinary chiral perturbation theory, allowing one to reproduce data for meson meson interaction up to 1.2 GeV and meson baryon interaction up to the first baryonic resonances. Applications to physical processes so far unsuited for a standard chiral perturbative approach are presented, concretely the K^- p\to\Lambda(1405)\gamma reaction and the N^\ast (1535)N^\ast(1535)\pi and \eta couplings.
η→π0γγdecay within a chiral unitary approach
We improve the calculations of the $\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\eta}}{\ensuremath{\pi}}^{0}\ensuremath{\gamma}\ensuremath{\gamma}$ decay within the context of meson chiral Lagrangians. We use a chiral unitary approach for the meson-meson interaction, thus generating the ${a}_{0}(980)$ resonance and fixing the long standing sign ambiguity on its contribution. This also allows us to calculate the loops with one vector meson exchange, thus removing a former source of uncertainty. In addition we ensure the consistency of the approach with other processes, first, by using vector meson dominance couplings normalized to agree with radiative vector meson decays and, second, by …
Nature of the axial-vector mesons from their N-c behavior within the chiral unitary approach
By describing within the chiral unitary approach the g-wave interaction of the vector meson nonet with the octet of pseudoscalar Goldstone bosons, we find that the main component of the axial-vector mesons -b(1)(1235), h(1)(1170), h(1)(1380), a(1)(1260), f(1)(1285) and the two states associated to the K-1(1270)- does not follow the QCD dependence on the number of colors for ordinary q (q) over bar mesons.