0000000000040655
AUTHOR
A.j. Smith
A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei
Abstract A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device has been designed to work in both vacuum and dilute-gas environments made possible through the introduction of a low-voltage stepping motor. DPUNS will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam line thus reducing the background from beam-…
The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE
The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …
A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE
A newdecay-spectroscopystation(DSS)has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 mg=cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108 deg. away, allowing longer-lived species to be studied. Up to three high purity germanium detector…
CRIS: A new method in isomeric beam production
The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…
A new plunger device to measure lifetimes of unbound states in tagged exotic nuclei
A new plunger device has been designed and is being built at the University of Manchester to measure lifetimes of unbound states in exotic nuclei approaching the proton drip-line. The device is designed to work in both vacuum and gas environments and will be used in conjunction with the gas filled separator RITU and the vacuum-mode separator MARA at the University of Jyvaskyla, Finland. This will enable the accurate measurement of excited state lifetimes identified via isomer and charged-particle tagging. The plunger will be used to address many key facets of nuclear structure physics with particular emphasis on the effect of deformation on proton emission rates.
High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE
The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219;221Fr, and has measured isotopes as short lived as 5 ms with 214Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of singleisotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. publisher: Elsevier articletitle: High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) exp…
A NEW PLUNGER DEVICE FOR INVESTIGATING THE EFFECTS OF DEFORMATION ON PROTON EMISSION RATES VIA LIFETIME MEASUREMENTS
A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device is designed to work in both vacuum and dilute-gas environments made possible through the introduction of a lowvoltage piezoelectric motors. The differential plunger for unbound nuclear states, DPUNS, will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam …
Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA
A search has been performed for nearly vertically upgoing neutrino-induced muons with the Antarctic Muon And Neutrino Detector Array (AMANDA), using data taken over the three year period 1997–99. No excess above the expected atmospheric neutrino background has been found. Upper limits at 90% confidence level have been set on the annihilation rate of neutralinos at the center of the Earth, as well as on the muon flux at AMANDA induced by neutrinos created by the annihilation products.
Investigation into the Effects of Deformation on Proton Emission Rates via Lifetime Measurements
Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line
The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for highresolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests. ispartof: pages:012070-6 ispartof: Journal of Physics: Conference Serie…
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN mode…
Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE
A new collinear resonant ionization spectroscopy (Cris)beam line has recently been installed at Isolde, Cern utilising lasers to combine collinear laser spectroscopy and resonant ionization spectroscopy. The combined technique offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing sensitive secondary experiments to be performed. A new programme aiming to use the Cris technique for the separation of nuclear isomeric states for decay spectroscopy will commence in 2011. A decay spectroscopy station, consisting of a rotating wheel implantation system for alpha decay spectroscopy, and thre…
TPEN: A Triple-foil differential Plunger for lifetime measurements of excited states in Exotic Nuclei
Abstract A Triple-foil differential Plunger for Exotic Nuclei (TPEN) has been developed to measure the lifetimes of excited states in nuclei with small production cross-sections. TPEN utilises one target foil and two degrader foils to make differential lifetime measurements: directly determining the decay function and its derivative at a single plunger distance setting. The direct measurement of the decay function and its derivative removes the requirement to measure γ -ray intensities at several target-to-degrader distances, thereby reducing the beam-time required relative to a conventional plunger with a single-degrader foil. This paper describes the commissioning of TPEN in the lifetime …
3rd HAWC cat. of VHE gamma-ray sources (3HWC)
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at >=5{sigma} significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1{deg} of previously detected TeV emitters, and 20 sources that are more than 1{deg} away from any previously detected TeV source. Of these 20 new sources, 14 have a p…
HAWC Gamma-Ray survey, AGNs at TeV photon energies
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory continuously detects TeV photons and particles within its large field of view, accumulating every day a deeper exposure of two-thirds of the sky. We analyzed 1523days of HAWC live data acquired over four and a half years, in a follow-up analysis of 138 nearby (z<0.3) active galactic nuclei from the Third Catalog of Hard Fermi-LAT sources culminating within 40{deg} of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum- likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detec…