0000000000040656

AUTHOR

A. Mcfarlane

A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei

Abstract A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device has been designed to work in both vacuum and dilute-gas environments made possible through the introduction of a low-voltage stepping motor. DPUNS will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam line thus reducing the background from beam-…

research product

A NEW PLUNGER DEVICE FOR INVESTIGATING THE EFFECTS OF DEFORMATION ON PROTON EMISSION RATES VIA LIFETIME MEASUREMENTS

A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device is designed to work in both vacuum and dilute-gas environments made possible through the introduction of a lowvoltage piezoelectric motors. The differential plunger for unbound nuclear states, DPUNS, will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam …

research product

Investigation into the Effects of Deformation on Proton Emission Rates via Lifetime Measurements

research product

TPEN: A Triple-foil differential Plunger for lifetime measurements of excited states in Exotic Nuclei

Abstract A Triple-foil differential Plunger for Exotic Nuclei (TPEN) has been developed to measure the lifetimes of excited states in nuclei with small production cross-sections. TPEN utilises one target foil and two degrader foils to make differential lifetime measurements: directly determining the decay function and its derivative at a single plunger distance setting. The direct measurement of the decay function and its derivative removes the requirement to measure γ -ray intensities at several target-to-degrader distances, thereby reducing the beam-time required relative to a conventional plunger with a single-degrader foil. This paper describes the commissioning of TPEN in the lifetime …

research product