0000000000040659
AUTHOR
V. Twist
A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei
Abstract A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device has been designed to work in both vacuum and dilute-gas environments made possible through the introduction of a low-voltage stepping motor. DPUNS will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam line thus reducing the background from beam-…
A new plunger device to measure lifetimes of unbound states in tagged exotic nuclei
A new plunger device has been designed and is being built at the University of Manchester to measure lifetimes of unbound states in exotic nuclei approaching the proton drip-line. The device is designed to work in both vacuum and gas environments and will be used in conjunction with the gas filled separator RITU and the vacuum-mode separator MARA at the University of Jyvaskyla, Finland. This will enable the accurate measurement of excited state lifetimes identified via isomer and charged-particle tagging. The plunger will be used to address many key facets of nuclear structure physics with particular emphasis on the effect of deformation on proton emission rates.
A NEW PLUNGER DEVICE FOR INVESTIGATING THE EFFECTS OF DEFORMATION ON PROTON EMISSION RATES VIA LIFETIME MEASUREMENTS
A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device is designed to work in both vacuum and dilute-gas environments made possible through the introduction of a lowvoltage piezoelectric motors. The differential plunger for unbound nuclear states, DPUNS, will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam …