0000000000040691

AUTHOR

Takeshi Takeuchi

showing 4 related works from this author

Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution.

2016

9 pages; International audience; Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high-throughput approaches. Such approaches have made possible…

0301 basic medicineBiomineralizationProteomicsComputational biologyBiologyProteomicsSkeletal tissueCalcium Carbonatebiomineralization ; metazoan ; calcification ; skeleton ; skeletal matrix ; proteomicsCalcificationEvolution Molecular03 medical and health scienceschemistry.chemical_compoundMatrix (mathematics)Calcification PhysiologicMetazoanStructural Biology[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsSkeleton[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsRapid identificationSkeletal matrix030104 developmental biologyCalcium carbonatechemistryBiochemistryBiomineralization
researchProduct

The ‘Shellome’ of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization

2021

Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we hav…

0301 basic medicine[CHIM.POLY] Chemical Sciences/Polymers[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringproteomeTridacna croceaJAPANESE PEARL OYSTERQH426-470[SPI.MAT] Engineering Sciences [physics]/Materials[SPI.MAT]Engineering Sciences [physics]/Materials03 medical and health sciences[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Genetics[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering14. Life underwaterMolluscaGenetics (clinical)Original Research030102 biochemistry & molecular biologybiology[CHIM.ORGA]Chemical Sciences/Organic chemistryfungibiology.organism_classificationBivalviabiomineralization[CHIM.ORGA] Chemical Sciences/Organic chemistryTridacnaPteriomorphiaMytilusBivalvia030104 developmental biology[CHIM.POLY]Chemical Sciences/PolymersEvolutionary biologyMolluscaProteomeMolecular Medicineshell formationHeterodontatranscriptomeBiomineralization
researchProduct

Biochemical characterization of the skeletal matrix of the massive coral, Porites australiensis - The saccharide moieties and their localization.

2018

11 pages; International audience; To construct calcium carbonate skeletons of sophisticated architecture, scleractinian corals secrete an extracellular skeletal organic matrix (SOM) from aboral ectodermal cells. The SOM, which is composed of proteins, saccharides, and lipids, performs functions critical for skeleton formation. Even though polysaccharides constitute the major component of the SOM, its contribution to coral skeleton formation is poorly understood. To this end, we analyzed the SOM of the massive colonial coral, Porites australiensis, the skeleton of which has drawn great research interest because it records environmental conditions throughout the life of the colony. The coral …

0106 biological sciences0301 basic medicineBiomineralizationGlycanCoralMatrix (biology)Polysaccharide010603 evolutionary biology01 natural sciencesCalcium Carbonate03 medical and health sciencesCalcification PhysiologicSaccharideStructural BiologyMonosaccharideAnimals14. Life underwater[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsSkeletonchemistry.chemical_classificationbiologySkeletal organic matrixLectinProteinsAnthozoaSkeleton (computer programming)Porites australiensisExtracellular Matrix030104 developmental biologyBiochemistrychemistrybiology.proteinMicroscopy Electron ScanningCoralCrystallizationBiomineralization
researchProduct

Skeletal organic matrices in molluscs: origin, evolution, diagenesis

2017

8 pages; International audience; The mollusc shell comprises a small amount of organic macromolecules, mostly proteins and polysaccharides, which, all together, constitute the skeletal organic matrix (SOM). In the recent years, the study of the SOM of about two dozens of mollusc species via transcriptomics and/or proteomics has led to the identification of hundreds of shell-associated proteins. This rapidly growing set of data allows several comparisons, shedding light on similarities and differences at the primary structure level and on some peculiar evolutionary mechanisms that may have affected SOM proteins. In addition, it constitutes a prerequisite for investigating the SOM repertoires…

0301 basic medicineProteomicsSubfossilProteinBiologyFunctional domainsProteomicsbiology.organism_classificationFossilizationSequencesTridacnaDiagenesisDiagenesis[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]03 medical and health sciences030104 developmental biology0302 clinical medicineOrder (biology)Evolutionary biologyMollusc shellShellIdentification (biology)14. Life underwaterMollusc030217 neurology & neurosurgery
researchProduct