0000000000040782

AUTHOR

F. Noto

showing 5 related works from this author

Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC

2020

The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.

photon: propagationPhotomultiplierCERN LabPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorstutkimuslaitteetPerformance of High Energy Physics DetectorPhase (waves)FOS: Physical sciencesCosmic rayNoble liquid detectors (scintillation ionization double-phase)Scintillator01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detMathematical Physicsscintillation counterPhysicsScintillationTime projection chamberphotomultiplier010308 nuclear & particles physicsbusiness.industryhep-exDetectorScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)time projection chamber: liquid argonNoble liquid detectors (scintillation ionization double-phase); Performance of High Energy Physics Detectors; Photon detectors for UV visible and IR photons (vacuum) (photomulti-pliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquidscintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FIS/01 - FISICA SPERIMENTALEilmaisimetScintillation counterbusinesskosminen säteilyperformanceParticle Physics - Experiment
researchProduct

Performance of prototypes for the ALICE electromagnetic calorimeter

2009

The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A $4\times4$ array of final design modules showed an energy resolution of about 11% /$\sqrt{E(\mathrm{GeV})}$ $\oplus$ 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm $\oplus$ 5.3 mm /$\sqrt{E \mathrm{(GeV)}}$. For an electron identification efficiency of 90% a hadron rejection factor of $>600$ was obtained.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesElectron7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics - Instrumentation and Detectors; Physics - Instrumentation and Detectors; High Energy Physics - ExperimentDetectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationImage resolutionPhysicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicsLinearityInstrumentation and Detectors (physics.ins-det)CalorimeterHigh Energy Physics::ExperimentALICE (propellant)
researchProduct

A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers

2018

A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorshiukkasfysiikka01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)Ionization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear ExperimentInstrumentationphysics.ins-detMathematical Physicsgas: admixtureLarge Hadron ColliderDetectorneutriinotInstrumentation and Detectors (physics.ins-det)experimental equipmentneutrino: detectorNeutrino detectorTime projection chamberilmaisimettime projection chambersLarge scale cryogenic liquid detectors [8]photon: yieldParticle Physics - ExperimentperformanceMaterials scienceCERN LabTime projection chambersParticle tracking detectors (Gaseous detectors)ionization: yieldparticle tracking detectors (gaseous detectors)tutkimuslaitteetFOS: Physical scienceschemistry.chemical_elementNeutrino detectors; Particle tracking detectors (Gaseous detectors); Time projection chambersOptics0103 physical sciencesDeep Underground Neutrino Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsScintillationArgon010308 nuclear & particles physicsbusiness.industryhep-extime projection chamber: liquid argonchemistrymuon: cosmic radiationHigh Energy Physics::ExperimentbusinessTonneneutrino detectors
researchProduct

Microcirculation in the healing of surgical wounds in the oral cavity.

2013

Abstract. The aim of this research is to evaluate in vivo the characteristics of microcirculation after taking a biopsy sample from the oral mucosa. 20 patients were recruited to the study and all underwent an oral mucosa biopsy for the excision of benign neoformations. The modifications in the oral microcirculation were evaluated in vivo in correspondence to the surgical site through videocapillaroscopy at three different times: 30 min before the biopsy; 48 h after the biopsy; and 7 days after the biopsy. The statistical significance was checked with the Mann–Whitney U-test (P < 0.05). The analysis of videocapillaroscopic patterns showed statistically significant variations relative to the…

AdultMalemedicine.medical_specialtyVideo RecordingMicroscopic AngioscopyFibromaMicrocirculationMicroscopic AngioscopyYoung AdultDouble-Blind MethodIn vivoBiopsymedicineImage Processing Computer-AssistedHumansOral mucosaAgedMouth neoplasmMouthWound Healingoral microcirculationmedicine.diagnostic_testPapillomabusiness.industrySettore BIO/16 - Anatomia UmanaMicrocirculationBiopsy NeedleOptical ImagingSurgical woundvideocapillaroscopysurgical wounds.Middle AgedSurgeryCapillariesTongue Neoplasmsmedicine.anatomical_structureOtorhinolaryngologyLip NeoplasmsSurgeryFemaleMouth NeoplasmsOral SurgerybusinessWound healingFollow-Up StudiesInternational journal of oral and maxillofacial surgery
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct