0000000000040907

AUTHOR

Katsuyu Kasami

showing 6 related works from this author

Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC

2020

The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.

photon: propagationPhotomultiplierCERN LabPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorstutkimuslaitteetPerformance of High Energy Physics DetectorPhase (waves)FOS: Physical sciencesCosmic rayNoble liquid detectors (scintillation ionization double-phase)Scintillator01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detMathematical Physicsscintillation counterPhysicsScintillationTime projection chamberphotomultiplier010308 nuclear & particles physicsbusiness.industryhep-exDetectorScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)time projection chamber: liquid argonNoble liquid detectors (scintillation ionization double-phase); Performance of High Energy Physics Detectors; Photon detectors for UV visible and IR photons (vacuum) (photomulti-pliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquidscintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FIS/01 - FISICA SPERIMENTALEilmaisimetScintillation counterbusinesskosminen säteilyperformanceParticle Physics - Experiment
researchProduct

Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

2012

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenaon-axis near detectorFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyNeutrino oscillation; on-axis near detectorneutrino oscillation; neutrino detector; wavelength shifting fiber; t2k; extruded scintillator; neutrino beamNeutrino detectorNuclear physicsNeutrino beamneutrino beam0103 physical sciencesExtruded scintillatorMuon neutrinoneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationInstrumentationT2KPhysicst2k010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiberT2K experimentextruded scintillatorFísicaInstrumentation and Detectors (physics.ins-det)Neutrino detectorneutrino detectorWavelength shiftingfiberMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoBeam (structure)Leptonwavelength shifting fiber
researchProduct

A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers

2018

A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorshiukkasfysiikka01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)Ionization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear ExperimentInstrumentationphysics.ins-detMathematical Physicsgas: admixtureLarge Hadron ColliderDetectorneutriinotInstrumentation and Detectors (physics.ins-det)experimental equipmentneutrino: detectorNeutrino detectorTime projection chamberilmaisimettime projection chambersLarge scale cryogenic liquid detectors [8]photon: yieldParticle Physics - ExperimentperformanceMaterials scienceCERN LabTime projection chambersParticle tracking detectors (Gaseous detectors)ionization: yieldparticle tracking detectors (gaseous detectors)tutkimuslaitteetFOS: Physical scienceschemistry.chemical_elementNeutrino detectors; Particle tracking detectors (Gaseous detectors); Time projection chambersOptics0103 physical sciencesDeep Underground Neutrino Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsScintillationArgon010308 nuclear & particles physicsbusiness.industryhep-extime projection chamber: liquid argonchemistrymuon: cosmic radiationHigh Energy Physics::ExperimentbusinessTonneneutrino detectors
researchProduct

Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam

2011

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2|=2.4\times10^{-3}$ eV$^2$, $\sin^2 2\theta_{23}=1$ and $\sin^2 2\theta_{13}=0$, the expected number of such events is 1.5$\pm$0.3(syst.). Under this hypothesis, the probability to observe six or more candidate events is 7$\times10^{-3}$, equivalent to 2.5$\sigma$ significance. At 90% C.L., the data are consistent with 0.03(0.04)$<\sin^2 2\theta_{13}<$ 0.28(0.34) for $\delta_{\rm CP}=0$ and a normal (inverted) hierarchy.

Particle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2CHOOZ01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)neutrino14.60.Pq 13.15.+g 25.30.Pt 95.55.Vj0103 physical sciencesneutrino oscillationMuon neutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSPhysicsNOνATribimaximal mixinghep-ex010308 nuclear & particles physicsT2K experimentFísicaT2K Collaborationparticle identificationElectron neutrinoexperimental resultsPhysical Review Letters
researchProduct

First Muon-Neutrino Disappearance Study with an Off-Axis Beam

2012

We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 × 10(20) protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ → ντ oscillations is sin 2(2θ(23)) = 0.98 and |Δm(2)(32)| = 2.65 × 10(−3) eV2. The boundary of the 90% confidence region includes the points (sin2 (2θ(23)), |Δm(2)(32)|) = (1.0, 3.1 × 10(−3) eV2), (0.84, …

Nuclear and High Energy Physics530 PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.27. Clean energy01 natural sciencesNeutrino scatteringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNeutrino oscillationQCPhysics010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyT2K experimentFísicaPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentBeam (structure)
researchProduct

The T2K Experiment

2011

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.27. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Long baseline[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationphysics.ins-detInstrumentationQCPhysicsT2Khep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentNeutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-KamiokandeFísicaNeutrino detectorJ-PARCHigh Energy Physics::ExperimentJ-PARCSuper-KamiokandeNeutrinoSuper-KamiokandeLepton
researchProduct