0000000000040910

AUTHOR

Thorsten Lux

showing 18 related works from this author

Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC

2020

The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.

photon: propagationPhotomultiplierCERN LabPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorstutkimuslaitteetPerformance of High Energy Physics DetectorPhase (waves)FOS: Physical sciencesCosmic rayNoble liquid detectors (scintillation ionization double-phase)Scintillator01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detMathematical Physicsscintillation counterPhysicsScintillationTime projection chamberphotomultiplier010308 nuclear & particles physicsbusiness.industryhep-exDetectorScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)time projection chamber: liquid argonNoble liquid detectors (scintillation ionization double-phase); Performance of High Energy Physics Detectors; Photon detectors for UV visible and IR photons (vacuum) (photomulti-pliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquidscintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FIS/01 - FISICA SPERIMENTALEilmaisimetScintillation counterbusinesskosminen säteilyperformanceParticle Physics - Experiment
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Search for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino Beam

2020

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40 σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and a…

muon antineutrino beamGeneral Physics and Astronomyantineutrino/mu: secondary beamKAMIOKANDEantineutrino/e: particle identification01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)secondary beam [neutrino/mu][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino/e: particle identificationQCPhysics02 Physical SciencesPhysicsJ-PARC LabT2K experimentelectron antineutrinoT2K CollaborationkinematicsPhysical SciencesParticle Physics - ExperimentT2K experiment in an accelerator-producedGeneral Physics530 PhysicsPhysics MultidisciplinaryFOS: Physical sciencesparticle identification [antineutrino/e]Neutrino beamsecondary beam [antineutrino/mu]530Physics::GeophysicsNuclear physics0103 physical sciencesmixingddc:530010306 general physics01 Mathematical SciencesMuonScience & Technologyparticle identification [neutrino/e]hep-exbackgroundHigh Energy Physics - Experiment; High Energy Physics - Experimentneutrino/mu: secondary beamantineutrino: oscillationoscillation [antineutrino]Elementary Particles and FieldsHigh Energy Physics::ExperimentPMNSElectron neutrinoBeam (structure)Free parameterexperimental results
researchProduct

Measurements of ν̅ μ and ν̅ μ + ν μ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino…

2021

Abstract We report measurements of the flux-integrated ν̅μ and ν̅μ + νμ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. An absence of pions and protons in the …

chemistry.chemical_classificationPhysicsParticle physicsMuonProton010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural sciencesHydrocarbonPionchemistry0103 physical sciences010306 general physicsNucleonEnergy (signal processing)Charged currentBar (unit)Progress of Theoretical and Experimental Physics
researchProduct

Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

2012

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenaon-axis near detectorFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyNeutrino oscillation; on-axis near detectorneutrino oscillation; neutrino detector; wavelength shifting fiber; t2k; extruded scintillator; neutrino beamNeutrino detectorNuclear physicsNeutrino beamneutrino beam0103 physical sciencesExtruded scintillatorMuon neutrinoneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationInstrumentationT2KPhysicst2k010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiberT2K experimentextruded scintillatorFísicaInstrumentation and Detectors (physics.ins-det)Neutrino detectorneutrino detectorWavelength shiftingfiberMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoBeam (structure)Leptonwavelength shifting fiber
researchProduct

First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single- π+ production channel containing at least one pr…

2021

This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-$\pi^+$ production channel of neutrino interactions. We measure the differential cross sections in the muon-neutrino charged-current interaction on hydrocarbon with a single $\pi^+$ and at least one proton in the final state, at the ND280 off-axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models which have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.

PhysicsProtonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsMonte Carlo methodT2K experiment01 natural sciences7. Clean energyNuclear physicsTransverse plane0103 physical sciencesMuon neutrinoNeutrino010306 general physicsEvent (particle physics)Charged currentPhysical Review D
researchProduct

Large bulk Micromegas detectors for TPC applications

2009

A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large Surface with a simple mounting Solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors (36 x 34 cm(2)) and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acq…

T2KPhysicsNuclear and High Energy PhysicsEnergy lossField (physics)Physics::Instrumentation and Detectorsbusiness.industryDetectorMicroMegas detectorCosmic rayNuclear physicsOpticsApplication-specific integrated circuitPoint (geometry)TPCbusinessInstrumentationMicromegasHARPNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Search for heavy neutrinos with the T2K near detector ND280

2019

This paper reports on the search for heavy neutrinos with masses in the range 140<MN<493  MeV/c2 using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N→ℓ±απ∓ and N→ℓ+αℓ−β(−)ν(α,β=e,μ). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heav…

decay modes [neutrino]GENERAL-THEORYmixing [neutrino]Physics::Instrumentation and Detectorsneutrino: heavy: search forKAMIOKANDE01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsHigh Energy Physics - Experiment (hep-ex)LIMITSsecondary beam [neutrino/mu]neutrino: decay modes[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massmedia_commonPhysicsVMSMJ-PARC LabPhysicsstatistical analysis: BayesianK: decayheavy neutrinos T2K Experiment Time Projection Chambersmass dependenceGeneral theoryT2K ExperimentTime Projection ChambersPhysical SciencesChristian ministrydata analysis methodFOS: Physical sciencesLibrary scienceheavy: search for [neutrino]Astronomy & AstrophysicsBayesian [statistical analysis]530near detector0103 physical sciencesDARK-MATTERmedia_common.cataloged_instanceddc:530Early careerEuropean unionS077A00010306 general physicsS077A01heavy neutrinosScience & Technology010308 nuclear & particles physicsbackgroundhep-exHigh Energy Physics::PhenomenologyFísicaneutrino/mu: secondary beamtime projection chamberdecay [K]mass [neutrino]Hypothetical particle physics models Particle phenomenaHigh Energy Physics::Experimentneutrino: mixingstatisticalexperimental resultsPhysical Review D
researchProduct

A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers

2018

A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorshiukkasfysiikka01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)Ionization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear ExperimentInstrumentationphysics.ins-detMathematical Physicsgas: admixtureLarge Hadron ColliderDetectorneutriinotInstrumentation and Detectors (physics.ins-det)experimental equipmentneutrino: detectorNeutrino detectorTime projection chamberilmaisimettime projection chambersLarge scale cryogenic liquid detectors [8]photon: yieldParticle Physics - ExperimentperformanceMaterials scienceCERN LabTime projection chambersParticle tracking detectors (Gaseous detectors)ionization: yieldparticle tracking detectors (gaseous detectors)tutkimuslaitteetFOS: Physical scienceschemistry.chemical_elementNeutrino detectors; Particle tracking detectors (Gaseous detectors); Time projection chambersOptics0103 physical sciencesDeep Underground Neutrino Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsScintillationArgon010308 nuclear & particles physicsbusiness.industryhep-extime projection chamber: liquid argonchemistrymuon: cosmic radiationHigh Energy Physics::ExperimentbusinessTonneneutrino detectors
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam

2011

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2|=2.4\times10^{-3}$ eV$^2$, $\sin^2 2\theta_{23}=1$ and $\sin^2 2\theta_{13}=0$, the expected number of such events is 1.5$\pm$0.3(syst.). Under this hypothesis, the probability to observe six or more candidate events is 7$\times10^{-3}$, equivalent to 2.5$\sigma$ significance. At 90% C.L., the data are consistent with 0.03(0.04)$<\sin^2 2\theta_{13}<$ 0.28(0.34) for $\delta_{\rm CP}=0$ and a normal (inverted) hierarchy.

Particle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2CHOOZ01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)neutrino14.60.Pq 13.15.+g 25.30.Pt 95.55.Vj0103 physical sciencesneutrino oscillationMuon neutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSPhysicsNOνATribimaximal mixinghep-ex010308 nuclear & particles physicsT2K experimentFísicaT2K Collaborationparticle identificationElectron neutrinoexperimental resultsPhysical Review Letters
researchProduct

First Muon-Neutrino Disappearance Study with an Off-Axis Beam

2012

We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 × 10(20) protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ → ντ oscillations is sin 2(2θ(23)) = 0.98 and |Δm(2)(32)| = 2.65 × 10(−3) eV2. The boundary of the 90% confidence region includes the points (sin2 (2θ(23)), |Δm(2)(32)|) = (1.0, 3.1 × 10(−3) eV2), (0.84, …

Nuclear and High Energy Physics530 PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.27. Clean energy01 natural sciencesNeutrino scatteringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNeutrino oscillationQCPhysics010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyT2K experimentFísicaPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentBeam (structure)
researchProduct

First measurement of the charged current ν¯μ double differential cross section on a water target without pions in the final state

2020

We thank the J-PARC staff for superb accelerator performance. We thank the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), the NRC and CFI, Canada; the CEA and CNRS/IN2P3, France; the DFG, Germany; the INFN, Italy; the National Science Centre and Ministry of Science and Higher Education, Poland; the RSF (Grant No. 19-12-00325) and the Ministry of Science and Higher Education, Russia; MINECO and ERDF funds, Spain; the SNSF and SERI, Switzerland; the STFC, UK; and the DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the We…

PhysicsScattering cross-section010308 nuclear & particles physics0103 physical sciencesmedia_common.cataloged_instanceLibrary scienceChristian ministryEarly careerEuropean union010306 general physics01 natural sciencesmedia_commonPhysical Review D
researchProduct

Time projection chambers for the T2K near detectors

2011

The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator–bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The d…

Nuclear and High Energy PhysicsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.2Tracking (particle physics)01 natural sciences7. Clean energyNuclear physics0103 physical sciences010306 general physicsNeutrino oscillationInstrumentationPhysicsTime projection chamber010308 nuclear & particles physicsDetectorT2K experimentDrift chamber Gas system Micromegas Neutrino oscillation Time projection chamberFísicaMicroMegas detectorTime projectionchamberGas systemCharged particleTime projection chamberDrift chamberHigh Energy Physics::ExperimentNeutrinoMicromegas
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct

The T2K Experiment

2011

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.27. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Long baseline[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationphysics.ins-detInstrumentationQCPhysicsT2Khep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentNeutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-KamiokandeFísicaNeutrino detectorJ-PARCHigh Energy Physics::ExperimentJ-PARCSuper-KamiokandeNeutrinoSuper-KamiokandeLepton
researchProduct