0000000000041032
AUTHOR
Pasi A. Jänne
Intratumoral Heterogeneity in EGFR-Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition
Abstract Non–small cell lung cancers (NSCLC) that have developed resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here, we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFβ secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFβ was sufficient to ind…
CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC
Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…
Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors
Abstract The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of m…
Association Between Tumor Egfr and Kras Mutation Status and Clinical Outcomes in Nsclc Patients Randomized to Sorafenib Plus Best Supportive Care (BSC) or Bsc Alone: Subanalysis of the Phase III Mission Trial
ABSTRACT Background Tumor EGFR and KRas mutations are both predictive and prognostic biomarkers in patients with advanced NSCLC. We analyzed the correlation between these biomarkers and treatment outcomes in a phase III trial of 3rd/4th line sorafenib in patients with NSCLC. Methods The global, randomized, placebo-controlled MISSION trial enrolled 703 patients with advanced relapsed/refractory NSCLC of predominantly non-squamous histology. The primary study endpoint was overall survival (OS). EGFR and KRas mutations were analyzed in archival tumor samples and in circulating tumor DNA isolated from plasma. Results Tumor and/or plasma mutation data were available from 347 patients (49%). EGFR…
Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a target in LKB1 Mutant Lung Cancer
Abstract The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase, which coordinates cell growth, polarity, motility, and metabolism. In non–small cell lung carcinoma, LKB1 is somatically inactivated in 25% to 30% of cases, often concurrently with activating KRAS mutations. Here, we used an integrative approach to define novel therapeutic targets in KRAS-driven LKB1-mutant lung cancers. High-throughput RNA interference screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase (DTYMK), which catalyzes dTTP biosynthesis, as synthetica…
Abstract LB-399: Chronic inhibition of mutant EGFR in NSCLC leads to EGFR TKI resistance by TGF-β1 mediated epithelial to mesenchymal transition
Abstract In NSCLC, activating EGFR mutations underlie responsiveness of NSCLCs to reversible EGFR tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib. Despite initial responses, acquired resistance invariably develops, mediated by the emergence of the secondary T790M mutation and by focal amplification of MET, in approximately 50% and 30% of patients, respectively. The resistance mechanisms for the remaining 20% of cases remain elusive. EGFR TKI-sensitive HCC827 cells were exposed to graded concentrations of erlotinib for 6 months. Approximately 70% of the isolated clones were resistant to erlotinib and harbored MET amplification, and were sensitive to dual EGFR/MET inhibit…
Abstract 766: Suppression of gefitinib-induced EMT in EGFR mutant NSCLC preferentially selects for acquired T790M
Abstract Activating EGFR mutations in non-small lung cancer (NSCLC) confer sensitivity to reversible EGFR tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib. Despite promising initial response acquired resistance develops mediated by the emergence of the secondary T790M mutation or by focal amplification of MET. An epithelial-to-mesenchymal transition (EMT) is clinically linked to NSCLCs with acquired EGFR TKI resistance. The exact mechanisms of EGFR TKI resistance with EMT phenotype remain elusive; therefore, we attempted to develop a strategy to prevent the emergence of EGFR TKI resistance with EMT phenotype. In order to mimic the development of acquired EGFR TKI resista…