Gravitino dark matter with neutralino NLSP in the constrained NMSSM
The gravitino dark matter with neutralino NLSP hypothesis is investigated in the framework of NMSSM. We have considered both the thermal and non-thermal gravitino production mechanisms, and we have taken into account all the collider and cosmological constraints. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
The degenerate scenario in the NMSSM: Direct singlino-like neutralino searches with a gravitino LSP
A two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis to work. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino.
Direct neutralino searches in the NMSSM with gravitino LSP in the degenerate scenario
In the present work a two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino.
Critical behavior of a supersymmetric extension of the Ginzburg-Landau model
We make a connection between quantum phase transitions in condensed matter systems, and supersymmetric gauge theories that are of interest in the particle physics literature. In particular, we point out interesting effects of the supersymmetric quantum electrodynamics upon the critical behavior of the Ginzburg-Landau model. It is shown that supersymmetry fixes the critical exponents, as well as the Landau-Ginzburg parameter, and that the model resides in the type II regime of superconductivity.
A dynamical dark energy model with a given luminosity distance
It is assumed that the current cosmic acceleration is driven by a scalar field, the Lagrangian of which is a function of the kinetic term only, and that the luminosity distance is a given function of the red-shift. Upon comparison with Baryon Acoustic Oscillations (BAOs) and Cosmic Microwave Background (CMB) data the parameters of the models are determined, and then the time evolution of the scalar field is determined by the dynamics using the cosmological equations. We find that the solution is very different than the corresponding solution when the non-relativistic matter is ignored, and that the universe enters the acceleration era at larger red-shift compared to the standard $\Lambda CD…
Higher-order coupled quintessence
We study a coupled quintessence model in which the interaction with the dark-matter sector is a function of the quintessence potential. Such a coupling can arise from a field dependent mass term for the dark-matter field. The dynamical analysis of a standard quintessence potential coupled with the interaction explored here shows that the system possesses a late-time accelerated attractor. In light of these results, we perform a fit to the most recent Supernovae Ia, Cosmic Microwave Background, and Baryon Acoustic Oscillation data sets. Constraints arising from weak equivalence principle violation arguments are also discussed.
Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner
The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determi…